Jeremie Kim, ETH Zurich
From 12.00 until 13.30
At CNB/F/110 (Lunch) + CNB/F/100.9 (Seminar), ETH Zurich
Universitätstrasse 6, 8092 Zurich
Abstract:
Physically Unclonable Functions (PUFs) are commonly used in cryptography to identify devices based on the uniqueness of their physical microstructures. DRAM-based PUFs have numerous advantages over PUF designs that exploit alternative substrates: DRAM is a major component of many modern systems, and a DRAM-based PUF can generate many unique identifiers. However, none of the prior DRAM PUF proposals provide implementations suitable for runtime-accessible PUF evaluation on commodity DRAM devices. Prior DRAM PUFs exhibit unacceptably high latencies, especially at low temperatures (e.g., >125.8s on average for a 64KiB memory segment below 55$C), and they cause high system interference by keeping part of DRAM unavailable during PUF evaluation.
In this talk, we introduce the DRAM latency PUF, a new class of fast, reliable DRAM PUFs. The key idea is to reduce DRAM read access latency below the reliable datasheet specifications using software-only system calls. Doing so results in error patterns that reflect the compound effects of manufacturing variations in various DRAM structures (e.g., capacitors, wires, sense amplifiers). Based on a rigorous experimental characterization of 223 modern LPDDR4 DRAM chips, we demonstrate that these error patterns 1) satisfy runtime-accessible PUF requirements, and 2) are quickly generated (i.e., at 88.2ms) irrespective of operating temperature using a real system with no additional hardware modifications. We show that, for a constant DRAM capacity overhead of 64KiB, our implementation of the DRAM latency PUF enables an average (minimum, maximum) PUF evaluation time speedup of 152x (109x, 181x) at 70C and 1426x (868x, 1783x) at 55C when compared to a DRAM retention PUF and achieves greater speedups at even lower temperatures.