

DISCUSSION PAPER SERIES

DP19047
(v. 2)

ARTIFICIAL BUGS FOR BUG BOUNTY

Hans Gersbach, Fikri Pitsuwan and Pio Blieske

INDUSTRIAL ORGANIZATION AND
ORGANIZATIONAL ECONOMICS

ISSN 0265-8003

ARTIFICIAL BUGS FOR BUG BOUNTY
Hans Gersbach, Fikri Pitsuwan and Pio Blieske

Discussion Paper DP19047
 First Published 06 May 2024
 This Revision 07 May 2024

Centre for Economic Policy Research
 33 Great Sutton Street, London EC1V 0DX, UK

 Tel: +44 (0)20 7183 8801
 www.cepr.org

This Discussion Paper is issued under the auspices of the Centre’s research programmes:

Industrial Organization
Organizational Economics

Any opinions expressed here are those of the author(s) and not those of the Centre for Economic
Policy Research. Research disseminated by CEPR may include views on policy, but the Centre
itself takes no institutional policy positions.

The Centre for Economic Policy Research was established in 1983 as an educational charity, to
promote independent analysis and public discussion of open economies and the relations among
them. It is pluralist and non-partisan, bringing economic research to bear on the analysis of
medium- and long-run policy questions.

These Discussion Papers often represent preliminary or incomplete work, circulated to encourage
discussion and comment. Citation and use of such a paper should take account of its provisional
character.

Copyright: Hans Gersbach, Fikri Pitsuwan and Pio Blieske

ARTIFICIAL BUGS FOR BUG BOUNTY

Abstract

Bug bounty programs, where external agents are invited to search and report vulnerabilities (bugs)
in exchange for rewards (bounty), have become a major tool for companies to improve their
systems. We suggest augmenting such programs by inserting artificial bugs to increase the
incentives to search for real (organic) bugs. Using a model of crowdsearch, we identify the
efficiency gains by artificial bugs, and we show that for this, it is sufficient to insert only one
artificial bug. Artificial bugs are particularly beneficial, for instance, if the designer places high
valuations on finding organic bugs or if the budget for bounty is not sufficiently high. We discuss
how to implement artificial bugs and outline their further benefits.

JEL Classification: C72, D82, M52

Keywords: Crowdsearch, Bug Bounty, Artificial Bug, Cybersecurity

Hans Gersbach - hgersbach@ethz.ch
KOF Swiss Economic Institute, ETH Zurich and CEPR

Fikri Pitsuwan - fpitsuwan@ethz.ch
KOF Swiss Economic Institute, ETH Zurich

Pio Blieske - pblieske@ethz.ch
KOF Swiss Economic Institute, ETH Zurich

Acknowledgements
This research was supported by the Zurich Information Security and Privacy Center (ZISC). We thank Rainer Böhme, Kari
Kostiainen, Ueli Maurer, Martina Schwab, Marcel Zumbühl, representatives of Zurich Insurance and Swiss Post, as well as seminar
participants at the Workshop on Real-life Impacts of Security Vulnerabilities (2024) at ETH Zurich for valuable comments and
discussions. All errors are our own.

Powered by TCPDF (www.tcpdf.org)

Artificial Bugs for Bug Bounty∗

Hans Gersbach
KOF Swiss Economic Institute,

ETH Zurich, and CEPR

Leonhardstrasse 21

8092 Zurich, Switzerland

hgersbach@ethz.ch

Fikri Pitsuwan
KOF Swiss Economic Institute,

ETH Zurich

Leonhardstrasse 21

8092 Zurich, Switzerland

fpitsuwan@ethz.ch

Pio Blieske
KOF Swiss Economic Institute,

ETH Zurich

Leonhardstrasse 21

8092 Zurich, Switzerland

pblieske@ethz.ch

Last updated: May 6, 2024

Abstract

Bug bounty programs, where external agents are invited to search and report vul-
nerabilities (bugs) in exchange for rewards (bounty), have become a major tool for
companies to improve their systems. We suggest augmenting such programs by
inserting artificial bugs to increase the incentives to search for real (organic) bugs.
Using a model of crowdsearch, we identify the efficiency gains by artificial bugs,
and we show that for this, it is sufficient to insert only one artificial bug. Artificial
bugs are particularly beneficial, for instance, if the designer places high valuations
on finding organic bugs or if the budget for bounty is not sufficiently high. We
discuss how to implement artificial bugs and outline their further benefits.

Keywords: Crowdsearch, Bug Bounty, Artificial Bug, Cybersecurity

JEL Classification: C72, D82, M52

∗This research was supported by the Zurich Information Security and Privacy Center (ZISC). We
thank Rainer Böhme, Kari Kostiainen, Ueli Maurer, Martina Schwab, Marcel Zumbühl, representatives
of Zurich Insurance and Swiss Post, as well as seminar participants at the Workshop on Real-life Impacts
of Security Vulnerabilities (2024) at ETH Zurich for valuable comments and discussions. All errors are
our own.

1 Introduction

How should we design a public intrusion test where external security researchers are al-

lowed to probe the software and report any vulnerabilities (bug) in exchange for rewards

(bounty)? This type of program, often called bug bounty or crowdsourced security, has

become a major tool for detecting vulnerabilities in software used by governments, tech

companies, and blockchains.1 Bug bounty is used by companies even if they have strong

internal security teams (e.g. Google and Meta).2 It is also critical for blockchain in-

frastructure providers since such projects do not have dedicated security teams testing

software upgrades. Once the software is deployed, there is no turning back and no legal

mechanism defending against system exploitation, at least until the next hard fork—a

major change in the blockchain protocol (Breidenbach et al., 2018; Böhme et al., 2020).

There are comprehensive accounts on the rules of engagement of bug bounty programs

(Laszka et al., 2018), on the effectiveness and best practices of such programs (Walshe

and Simpson, 2020; Malladi and Subramanian, 2020), and on the incentives of researchers

to participate in bug bounty programs (Maillart et al., 2017).3 In this paper, we sug-

gest augmenting such bug bounty programs by inserting artificial bugs to increase the

incentives to search for real (organic) bugs.

We first extend the simple model of crowdsearch, wherein researchers with different

abilities decide on whether or not to exert costly effort to search for unknown objects that

are valuable to the organization. The model builds on the literature on binary contests

(Dubey (2013); Ghosh and Kleinberg (2016); Sarne and Lepioshkin (2017); Levy et al.

(2017); Gersbach et al. (2023a)) and contests with entry (Levin and Smith (1994); Moreno

and Wooders (2011); Liu and Lu (2019)). We then propose that inserting artificial bugs

and appropriately setting their parameters may be beneficial to the organization. In the

1Their success in the past few years has led the Swiss authorities to systematically adopt bug bounty
programs as a main measure in government cybersecurity. In a recent press release, the Federal Depart-
ment of Finance of Switzerland (2022) states that “standardised security tests are no longer sufficient
to uncover hidden loopholes. Therefore, in the future, it is intended that ethical hackers will search
through the Federal Administration’s productive IT systems and applications for vulnerabilities as part
of so-called bug bounty programmes.”

2See Malladi and Subramanian (2020).
3For extensive literature on bug bounty programs, see Böhme (2006); Zrahia et al. (2022); Akgul et al.

(2023).

2

language of contests, this is akin to inserting artificial milestones that have no inher-

ent value to the contest designer but may incentivize increased efforts, which indirectly

benefits the designer.

Our main contribution is the proposal to insert artificial bugs in bug bounty programs.

In particular, we examine how inserting artificial bugs can be useful to the organization by

lowering its financial commitment. We show that the ability to adjust the complexities of

artificial bugs allows the organization to motivate more participants to search for organic

bugs. We establish that it is sufficient to insert one artificial bug to reap all possible

efficiency gains. Moreover, we identify that an artificial bug is particularly beneficial if

the designer has high valuations for finding organic bugs, if organic bugs are likely to exist,

or if the designer’s budget is low. Finally, we outline different engineering approaches to

implement artificial bugs in practice and identify some other benefits of artificial bugs.

The paper is organized as follows: Section 2 sets up the model. Section 3 analyzes

a private bug bounty program in which a finite number of agents search for bugs. Sec-

tion 4 considers a public program with a large crowd. Numerical examples are shown in

Section 5. Section 6 outlines three approaches to implement artificial bugs and Section 7

discusses other benefits of artificial bugs. Section 8 concludes. Proofs are relegated to

the appendix.

2 The Model

We provide a foundation for artificial bugs in the simplest possible model of crowdsearch.

There are potentially L organic bugs in a system, indexed by l, and each exists with

probability µ = (µ1, . . . , µL) ∈ (0, 1]L. We assume that the occurrence of bugs l and

l′ (l ̸= l′) are stochastically independent, and neither the organization nor potential

participants in a bug bounty program have any knowledge of whether these bugs exist

and where to find them. An organization (henceforth, designer) values finding the bugs

at w = (w1, . . . , wL) ∈ [0,∞)L. The values of w can be interpreted as utility or monetary

values. The designer invites a set of risk-neutral agents N to search for them in exchange

3

for rewards v = (v1, . . . , vL) ∈ [0,∞)L. If agent i decides to search, s/he finds bug l with

probability ql ∈ (0, 1], which represents its complexity, and receives a prize vl uniformly

randomly rewarded to one of the agents who found it. The events finding bug l and

finding bug l′ (l ̸= l′) are stochastically independent. Searching, however, entails a fixed

cost ci to agent i ∈ N , which is private information and drawn from a distribution F with

support on [c, c], where −∞ ≤ c < c ≤ ∞ and c > 0.4 We impose that F is continuous,

has full support, has a finite density function f , and that F/f is non-decreasing.5

The designer has a budget of v > 0 and can set prizes v to incentivize the agents. In

addition to setting the prizes for the organic bugs, the designer can insertK artificial bugs,

indexed by k, into the system, offering rewards va = (v1a, . . . , v
K
a) ∈ [0,∞)K and setting

their complexities qa = (q1a, . . . , q
K
a) ∈ [0, 1]K , where complexity qka is the probability that

an agent finds the artificial bug. The complexities and reward system are communicated

to the participants. Note that while artificial bugs have no inherent value for the designer,

they may nonetheless be useful for the designer in motivating agents to participate.

The game has two stages. In the first stage, the designer sets v, va, and qa. In

the second stage, agents decide whether or not to exert costly effort to search for bugs

and are rewarded accordingly if they find any. The designer receives their value for the

bugs found and pays out the prizes accordingly. We analyze the game by first solving

for the (Bayes-Nash) equilibrium behavior of the agents in the second stage, then for the

designer’s optimal prizes and complexities of the artificial bugs.

We analyze the model in two environments. First, Section 3 considers a private

program, where the set of agents is finite, N = {1, . . . , n}. This represents a private

bug bounty program, where the designer invites n agents to search for bugs. Second,

Section 4 considers a public program, where we perform an asymptotic analysis of the

game in which the number of agents tends to infinity, n → ∞. This captures a public

bug bounty program, where the public can freely choose to participate.

4We allow the possibility that the lower support c is negative to capture agents with intrinsic gain
from search.

5This holds for many common distributions such as the exponential distribution, the beta distribution

with shape parameter β ≥ 1, and F (c) =
(

c−c
c−c

)α
on [c, c] with α > 0, which includes the uniform

distribution for α = 1.

4

2.1 Discussion of the Model

For the purpose of exposition and tractability, we impose some information assumptions

and simplifications in the model.

First, we assume that there are potentially L organic bugs in the system, which

may or may not exist. Each of these bugs is to be interpreted as a type of bug with

different severity levels. Thus, our informational assumption that the designer has an

understanding of the value wl of finding each type of bug could be interpreted as the

expected gain for the designer if such a type of bug is found. Moreover, given a system,

experienced researchers have quite an accurate idea of the complexity, i.e., the probability

of finding bugs.

Second, we assume that the search decision is binary since once a researcher decides

to enter a particular search, s/he devotes full resources to it at least for some amount of

time. Thus, the cost to participate in a specific bug bounty contest is, to a large extent,

fixed, and this cost includes time spent reading and understanding the update, writing a

program, designing an attack environment, and the opportunity cost of not participating

in other bug bounty programs.

Third, we abstract away from the time dimension as it is not pertinent for our main

goal. The model, however, could be interpreted with the timing aspect as follows. Sup-

pose that when agent i searches, i finds bug l with probability ql ∈ (0, 1] at a random

time tli that is uniformly distributed over a time period [0, T], where T is the duration

of the bug bounty program. Agent i then receives the prize for bug l if s/he is the first

agent to find it. Now, if these arrival times tli’s are identically distributed and stochasti-

cally independent across agents and bugs, then the resulting outcome is the prize-sharing

scheme presented in the main model, where the prize is given uniformly randomly among

those that found the bug.6

Fourth, the assumption that all agents find a particular bug with the same probability

is only for ease of exposition. The model can straightforwardly be extended to allow for

heterogeneous bug-finding probabilities, with qli denoting agent i’s probability of finding

6The model also extends to the case where search times are distributed differently similarly to Gers-
bach et al. (2023b).

5

bug l. This heterogeneity captures the idea that each security researcher has a particular

skill set that may favor finding some bugs rather than others. Maillart et al. (2017)’s

empirical investigation of bug bounty programs supports this assumption.

3 Private Program

This section considers a private program for bug bounty, where the designer invites n

agents to search for bugs. First, we characterize the equilibrium behavior of the agents

in the second stage. Then, we solve for the designer’s optimal choices and determine that

it is sufficient to insert only one artificial bug. We end this section by identifying the

condition under which inserting an artificial bug is useful.

3.1 Equilibrium Characterization

Given v, va, and qa set by the designer, the agents choose whether or not to search for

the bugs. Since participants can only take binary choices, it is without loss of generality

to consider only threshold strategies of the agents. A threshold strategy stipulates that

an agent searches if and only if his/her private cost is below a certain threshold. We also

focus on the symmetric equilibrium, where all agents use the same threshold c∗. Such an

equilibrium always exists.

To characterize the equilibrium threshold, denote by Φ(ĉ; q) the probability that an

agent wins the prize associated with a bug with complexity q, conditioning on it existing,

when the other n− 1 agents are using a threshold strategy ĉ.7 Then, agent i’s expected

benefit of searching is

Ψ(ĉ;v,va, qa) ≡
∑
l

vlµlΦ(ĉ; ql) +
∑
k

vkaΦ(ĉ; q
k
a),

where the first term sums up the expected benefit from finding organic bugs and the

second term from finding artificial bugs. Now, suppose that the other n − 1 agents use

the equilibrium threshold c∗, then agent i will search if and only if their expected benefit

7This event occurs if the agent finds the bug and is chosen among those who also found it.

6

of searching exceeds their private cost: ci ≤ Ψ(c∗). The following result follows.

Lemma 1. If Ψ(c) ≤ c, then c∗ = c. If Ψ(c) ≥ c, then c∗ = c. Otherwise, the symmetric

equilibrium threshold is c∗ = c∗(v,va, qa) is the unique solution to

ĉ = Ψ(ĉ;v,va, qa). (1)

The equilibrium threshold c∗ is the unique fixed point of Ψ and, therefore, the com-

parative statics properties are derived from the properties of Ψ, which in turn follows the

properties of Φ. The function Φ(ĉ; q) is strictly decreasing in ĉ and strictly increasing in

q. The comparative statics results are as follows. Increasing vl, µl, and vka , for some l or

k increases c∗, as agents are more incentivized to search if the prizes and the probabilities

that bugs exist are high. Moreover, decreasing the complexities—increasing ql’s—also

increases c∗.

3.2 Optimal Prizes and Number of Artificial Bugs

We now consider the designer’s problem of choosing the optimal prizes (for organic and

artificial bugs) and complexities (for artificial bugs). Let the probability that a bug with

complexity q is found be denoted by

P (ĉ; q) ≡ 1− (1− qF (ĉ))n

when agents follow the threshold ĉ to decide whether to search or not. The designer

chooses v, va, and qa to maximize their objective function consisting of two components.

The first is
∑

l w
lµlP (c∗; ql), which is the sum of the values gained from any organic

bugs found. The second component captures the rewards paid out to the agents for any

organic and artificial bugs found: −
∑

l v
lµlP (c∗; ql)−

∑
k v

k
aP (c∗; qka).

7

Therefore, the designer with a prize budget of v solves

max
v,va,qa

∑
l

(wl − vl)µlP (c∗; ql)−
∑
k

vkaP (c∗; qka)

subject to
∑
l

vl +
∑
k

vka ≤ v, vl ≥ 0, vka ≥ 0, qka ∈ [0, 1],

(2)

where c∗ = c∗(v,va, qa) is the symmetric equilibrium threshold that uniquely solves

Equation (1). Let v∗, v∗
a, and q∗

a denote a solution to the designer’s problem. The next

result states that it is without loss of generality to insert only one artificial bug, if any.

Lemma 2. If (v∗,v∗
a, q

∗
a) is a solution, then there exists another solution (v∗∗,v∗∗

a , q∗∗
a)

such that v∗∗
a = (v1∗∗a , 0, . . . , 0).

Lemma 2 holds because it is inefficient to have multiple artificial bugs of different

complexities, since artificial bugs are only useful indirectly, namely by incentivizing the

agents to participate. For this purpose, it is always most efficient when the budget is

spent on the prize corresponding to the artificial bug with the lowest complexity. In light

of this, the designer’s problem boils down to choosing v, va, and qa.

The key to solving the designer’s problem is to note that P (ĉ; q) can be decomposed

in terms of each agent’s probability of winning the corresponding prize.

Lemma 3. For a bug with complexity q, we have P (ĉ; q) = nF (ĉ)Φ(ĉ; q).

Intuitively, if a bug is found, one of the agents has to win the prize. To win the prize,

the agent has to have a cost below ĉ and to find the bug and be chosen among all agents

that search and also find the bug. Ex-ante, the former happens with probability F (ĉ) and

the latter with probability Φ(ĉ; q). From the perspective of the designer, all individuals

are ex-ante identical; thus, multiplying by n yields the probability that the bug is found.8

With Lemma 3, the designer’s objective function simplifies to
∑

l w
lµlP (ĉ; ql)−nF (ĉ)ĉ.

Therefore, the designer’s problem is to induce an optimal equilibrium threshold, denoted

8The relation continues to hold if it is common knowledge that agents are heterogeneous in other
aspects. For instance, agents may have different probabilities of finding a certain bug, or their costs may
be drawn from different distributions. In such cases, the equilibrium thresholds differ across agents and
we have the relation: P ((ĉ1, . . . , ĉn); (q1, . . . , qn)) =

∑
i Fi(ĉi)Φi(ĉ−i; (qi, q−i)).

8

ĉ∗, that maximizes the objective function, subject to the equilibrium threshold being

achievable given the budget v.9 Define the set achievable equilibrium thresholds as

C(v) ≡

{
ĉ : ĉ = Ψ(ĉ;v, va, qa),

∑
l

vl + va ≤ v, vl ≥ 0, va ≥ 0, qa ∈ [0, 1]

}
.

The set of achievable thresholds is an interval. Given that Φ(ĉ; q) is strictly increasing

in q, the highest achievable threshold is when the entire budget goes to the artificial bug

that is found with certainty.

Lemma 4. Let ca(v) be the unique fixed point of vΦ(ĉ; 1). Then, ca(v) increases in v and

C(v) = [0, ca(v)].

Taken together, the previous lemmata show that in effect, the designer’s problem is

to maximize

W (ĉ) ≡
∑
l

wlµlP (ĉ; ql)− nF (ĉ)ĉ, (3)

subject to ĉ ∈ [0, ca(v)].

Our first main result characterizes the solution to the designer’s problem. Define

Ω(ĉ) ≡
∑
l

wlµlql(1− qlF (ĉ))n−1 − F (ĉ)

f(ĉ)
(4)

and let c̃ be its unique fixed point, which is increasing in wl and µl. We have

Theorem 1. The optimal equilibrium threshold is ĉ∗ = min{c̃, ca(v)}. A set of prizes v∗,

v∗a and complexity q∗a that solve ĉ∗ = Ψ(ĉ∗;v, va, qa) is optimal.

3.3 Usefulness of Artificial Bugs

Next, we identify when inserting an artificial bug is useful. Note that it is feasible for the

designer not to add any artificial bug into the system, as va = 0 or qa = 0 are feasible.

In other words, the set of achievable equilibrium thresholds without any artificial bug is

9Achievability means that the available budget is sufficient to pay all prizes that have been promised.

9

defined as

C0(v) ≡

{
ĉ : ĉ = Ψ(ĉ;v, 0, 0),

∑
l

vl ≤ v, vl ≥ 0

}
⊆ C(v).

Analogously to Lemma 4, let cl(v) be the unique fixed point of vµlΦ(ĉ; ql). Then, C0(v) =

[0, c0(v)], where c0(v) = maxl c
l(v). This leads to the next main result.

Theorem 2. Inserting an artificial bug is beneficial to the designer if and only if c̃ >

c0(v).

The condition in Theorem 2 holds if wl and µl are high, or v is not too high. These

cases will be illustrated in the numerical examples in Section 5. In other words, inserting

an artificial bug is beneficial if the designer has high valuations for finding organic bugs,

if organic bugs are likely to exist, or if the designer’s budget is low.

4 Public Program

In this section, we examine the public bug bounty program and, in particular, the asymp-

totic behavior of the game as n → ∞. This is of special interest since public bug bounty

programs make use of the knowledge of a large group of experts. Throughout the section,

we denote the equilibrium threshold and the equilibrium success probability when there

are n agents in the public program by cn = c∗(n) and Pn(q) = P (c∗(n); q), respectively.

We assume throughout the section that c > 0. This is reasonable in most circumstances

since even high-ability agents have to exert effort to find the bugs and communicate with

the designer.10 For ease of exposition, we impose two further assumptions, which exclude

pathological cases in which a bug bounty program can not generate any benefits. First,

we assume that vΨ(c) ≥ c, i.e., that the budget constraint is greater than the smallest

possible cost for an agent to search. Otherwise, no agent will participate, and there is no

point in designing a bug bounty program. Second, we assume that
∑

l w
lµlql ≥ c since

otherwise, the designer can never compensate an agent for searching. Again, the budget

constraint v and the bugs described by w and q are given for the designer.

10For c = 0, it holds that Pn(q) → 1 for any prizes and complexities (see Gersbach et al. (2023a)).
This case seems to be less plausible.

10

We proceed as follows: First, we obtain results for the equilibrium behavior of the

agents in the second stage as n → ∞. Then, given the equilibrium behavior of the

agents, we solve for the designer’s optimal choices. Next, we verify that this is equivalent

to solving first for the designer’s optimal choices (i.e., the full game) and then performing

an asymptotic analysis on such choices. Lastly, we analyze the usefulness of inserting an

artificial bug in the public program.

4.1 Asymptotic Behavior

Given v, vq, and qa, the following lemma summarizes the asymptotic results for the second

stage game:

Lemma 5. Let κ∗ be the unique fixed point of

Ψ∞(κ̂;v, va, qa) ≡
∑
l

vlµl 1− e−qlκ̂

c
+ va

1− e−qaκ̂

c
.

Then, for n → ∞

(i) cn → c,

(ii) nF (cn) → κ∗,

(iii) Pn(q) → P∞(q) = 1− e−qκ∗
.

Note that the asymptotic behavior is distribution-free insofar that it does not depend

on the distribution of F , but only on c. The reason is that only agents with the high-

est ability (lowest cost) participate in a public program. The quantity κ∗ is important

as it represents the asymptotic participation, i.e., the asymptotic expected number of

participants in the crowdsearch.

4.2 Optimal Prizes

Denote by Wn(ĉ) the designer’s objective function (3) for a particular value of n. With

Lemma 5, we obtain the designer’s objective function at the equilibrium threshold, cn,

as n → ∞.

11

Corollary 1. The designer’s objective function at the equilibrium threshold cn converges:

Wn(cn) → W∞(κ∗) ≡
∑
l

wlµl
(
1− e−qlκ∗

)
− κ∗c, as n → ∞.

Thus, the designer’s payoff only depends on the asymptotic participation. As in the

private program, we define the set of achievable κ∗’s given a budget constraint v as

K(v) ≡

{
κ̂ : κ̂ = Ψ∞(κ̂;v, va, qa),

∑
l

vl + va ≤ v, vl ≥ 0, va ≥ 0, qa ∈ [0, 1]

}
.

The following lemma characterizes this set.

Lemma 6. Denote by κa(v) the unique fixed point of v 1−e−κ̂

c
. Then, κa(v) is increasing

in v and K(v) = [0, κa(v)].

Taking the previous lemmata together, the designer’s problem becomes

max
κ̂∈[0,κa(v)]

∑
l

wlµl
(
1− e−qlκ̂

)
− κ̂c.

Analogously to the private program, define

Ω∞(κ̂) ≡
∑
l

wlµlqle−qlκ̂ − c.

We observe that Ω∞(κ̂) is strictly decreasing and thus has a unique root since
∑

l w
lµlql ≥

c. Let κ̃ be its unique root, which is decreasing in wl and µl. We obtain the following

characterization.

Theorem 3. The optimal asymptotic participation is κ̂∗ = min{κ̃, κa(v)} and any set of

prizes v∞, v∞a and complexity q∞a that solve κ̂∗ = Ψ∞(κ̂∗;v, va, qa) is optimal.

4.3 Verification

We now verify that the designer’s optimal prizes and complexities in a game with finite

agents indeed converge to the solution obtained in Theorem 3. Denote the set of optimal

12

prizes and complexities in a private program with n agents by

Mn = {(v, va, qa) : ĉ∗ = Ψ(ĉ∗;v, va, qa)}

and the set of optimal prizes and complexities in a public program by

M∞ = {(v, va, qa) : κ̂∗ = Ψ∞(κ̂∗;v, va, qa)}.

To show that the two sets asymptotically coincide, we introduce the Hausdorff distance

which intuitively describes the maximum distance from points in any two sets.

Definition 1. Let A,B ⊆ Rk be two non-empty subsets. The Hausdorff distance induced

by the Euclidean norm ∥ · ∥2 is given by

d(A,B) = max

{
sup
x∈A

inf
y∈B

∥x− y∥2, sup
x∈B

inf
y∈A

∥x− y∥2
}
.

Equipped with this, we state our next theorem.

Theorem 4. It holds that d(Mn,M∞) → 0 as n → ∞.

Hence, as n increases, the maximal distance for any solution of the private program

comes arbitrarily close to a solution of the public program.

4.4 Usefulness of Artificial Bugs

Analogously to Theorem 2, we identify when inserting an artificial bug is useful in a

public program. Define κ0(v) = maxl κl(v), where κl(v) the fixed point of vlµl 1−e−qlκ

c
.

Theorem 5. In the public program, inserting an artificial bug is beneficial to the designer

if and only if κ̃ > κ0(v). This is the case if and only if there exists N ∈ N such that for

all n ≥ N , it is beneficial to insert an artificial bug in the private program with n agents.

Before ending this section, a remark on the cost distribution is in order. Throughout

this section, we kept the distribution F of the cost of the agents fixed. However, the

13

distribution can plausibly vary, depending on the size of the crowd, Fn. Because with

increasing n, less selection of the agents can occur until the whole population is open to

participating, it is safe to assume that Fn converges to some distribution. By Lemma 5,

the limit case does not depend on the distribution, and all the results still hold, where

the distribution Fn converges to some limit distribution F∞.

5 Numerical Examples

We next illustrate the results with numerical examples and visualize the effects of an

artificial bug and the dependence on the budget constraint.

5.1 Private Program

We start with the private program. Consider the uniform distribution on [0, 1] and assume

that there is one type of organic bug that exists with probability µ = 1
2
, has complexity

q = 1
2
, and that finding the bug derives a utility of w = 2 for the designer. For simplicity,

we assume n = 2 agents. Then, the optimal threshold given by the fixed point of (4)

is c̃ = 2
9
. The critical value depending on the budget constraint v is c0(v) =

(
4
v
+ 1

4

)−1
.

Thus, the condition c̃ > c0(v) from Theorem 2 holds if and only if v < 16
17
, i.e. inserting

an artificial bug is beneficial if and only if the budget is constrained by at least 16
17
.

For example, if v = 1
2
and if we do not allow the insertion of any artificial bug, the

maximum is attained at c0(v) =
4
33
, leading to a utility of 32

363
≈ 0.088 for the designer.

With an artificial bug, we can attain the optimal threshold of c̃ = 2
9
by choosing, for

example, v = 4
14
, va =

3
14

and qa = 1, so that we obtain a utility of 1
9
≈ 0.111.

Next, we illustrate graphically how inserting an artificial bug lowers the designer’s

financial commitment, in other words allows spending less on the prizes v and va. Consider

one organic and one artificial bug. In Figure 1, we fix µ, q, and plot the optimal prize

sets {(v, va) : c̃ = vµΦ(c̃; q) + vaΦ(c̃; qa)} for different qa’s on which the maximal utility is

achieved, i.e., at the optimal equilibrium threshold, c̃. The black line labeled v + va = v

represents the budget constraint for v = 2
3
. Therefore, the optimal equilibrium threshold

14

is achievable if the prizes (v, va) lie within the budget set. Observe that having a less

complex artificial bug, i.e., higher qa, leads to a larger portion of the optimal prize set

being within the budget set. In contrast, if the artificial bug is too complex to find, for

example, if qa =
1
5
, we cannot achieve the optimal threshold.

0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 0

0.2

0.4

0.6

0.8

 1

Figure 1: Optimal (v, va) given qa

0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

2

4

6

Figure 2: Dependence on w

In Figure 2, we plot the utility W (ĉ) of the designer against the thresholds ĉ for

different w’s. Observe that if we do not allow any artificial bugs, we can achieve only

thresholds in [0, c0(v)] ≈ [0, 0.308], whereas an artificial bug helps to achieve thresholds

up to ca(v) =
1
2
. For low w (take, for example, w = 2), inserting an artificial bug does

not help to achieve the maximum. If we increase w, an artificial bug is needed to achieve

the maximal utility (say w = 4). Increasing w further (w = 6) can lead to the case

that even when inserting an artificial bug, we are unable to achieve the maximal utility.

Nevertheless, inserting an artificial bug leads to a greater utility than without one. Note

that we obtain the same observations if we vary the probability µ that a bug exists instead

of w.

5.2 Public Program

To illustrate results for the public program, consider the uniform distribution on [1, 2].

As before, we assume that there is one type of bug that exists with probability µ = 1
2
,

has complexity q = 1
2
, and that finding it derives a utility of w = 10 for the designer.

The budget constraint is set to v = 5. Figure 3 is a visualization of the convergence of

15

the designer’s objective function Wn(ĉ) as n → ∞ as seen in Corollary 1. Observe that

the larger the number of agents, the smaller the optimal threshold cn as cn → c = 1

from Lemma 5. Figure 4 depicts the same plot, but with the x-axis scaled by nF (ĉ), to

visualize the convergence of nF (cn) → κ∗. Note that we can also see the convergence of

the designer’s objective function as n → ∞.

1 1.2 1.4 1.6 1.8 2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Figure 3: Convergence of Wn(ĉ) as n grows

0.5 1 2 2.5

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Figure 4: Scaled version

The effect of the budget constraint v and the artificial bug qa in the public program is

analogous to those in the private program. We therefore omit its visualization and refer

to Figure 1 and Figure 2 in the previous section.

Instead, we illustrate the convergence of the set of solutions for the private program

with n agents to the solutions of the public program from Theorem 4. In Figure 5, we

show projections of the sets Mn and M∞ for a fixed qa ∈
{

1
3
, 1
2
, 1
}
. We observe that the

Hausdorff distance decreases as n increases. Another interesting observation is that with

artificial bugs that are less complex to find, the designer gains more flexibility in setting

the prizes in the sense that the set of optimal prizes enlarges and allows less spending.

6 Implementation

The results in the previous sections show that artificial bugs are a welcome instrument for

the designer of bug bounty programs, especially when finding organic bugs is important

for the designer. Using artificial bugs in the design of bug bounty programs does not

pose any particular complexity from a technical perspective, as one can easily introduce

16

2 3 4 5

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

1 1.5 2 2.5 3 3.5

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0.5 1 1.5 2 2.5

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Figure 5: Convergence of the sets Mn to M∞

simpler or more sophisticated bugs in software packages. Yet, as prizes paid for finding

artificial and organic bugs may optimally differ, the designer may want to prove to the

finders of the artificial bug, or even to all participants, that an artificial bug found was

indeed inserted on purpose and was artificially designed by the designer at the start of the

bug bounty program. Even more importantly, if the artificial bug is not found during the

crowdsearch, it is important that the designer can prove that an artificial bug has been

inserted before the crowdsearch started. This would ensure, or reaffirm, the credibility

of the bug bounty program with artificial bugs. We outline three approaches that could

be used to achieve this objective: encryption, commitment scheme, and zero-knowledge

(ZK) proofs.11

Let us start with asymmetric encryption (see, e.g., Stallings (2020)). The original

block of the code and the modified code block with the artificial bug could be encrypted

before the crowdsearch starts, and participants can decrypt it once the crowdsearch has

ended. More specifically, the designer and participants are connected to a trusted entity

that generates a public key and a private key for each participant. The public key infor-

mation is stored in a directory. Before the crowdsearch starts, the designer encrypts both

11Of course, the credibility of inserting artificial bugs could also be ensured by traditional means. For
instance, the designer could invite a notary, who confirms in a written statement that an artificial bug
has been inserted.

17

the original and the modified block of code with the artificial bug using the participant’s

public key and sends the encrypted message to all participants. Once the crowdsearch

competition has ended, the participants receive their private keys to decrypt the message

and verify the existence of the artificial bug.

This approach also allows the artificial bug to only exist with a particular probability,

which is common knowledge to the designer and all participants before the crowdsearch

starts. The trusted entity flips a biased coin and, based on the outcome of the coin, sends

a message to the designer about whether to insert a bug or not. In case no bug should

be introduced, the private keys will be empty and not be usable to decrypt any message.

This shows to the participants that no artificial bug has been inserted. We note that

such an approach is incentive-compatible for the bug bounty designer. If no artificial bug

should be inserted, there is also no benefit in inserting such a bug secretly, as such a

bug would be treated as an organic bug. If detected, the designer has to pay, and thus,

inserting a bug would only be worse off, as the incentive to search for bugs is unaffected.

While the bug bounty platform is a natural candidate for the trusted entity, an al-

ternative approach that does not rely on having a third party is for the designer to use

a commitment scheme (Goldreich, 2001). Specifically, before the crowdsearch starts, the

designer computes a commitment over the modified block of code with the artificial bug.

The designer then publishes the commitment without revealing any further information

about the artificial bug (hiding property). Once the competition has ended, the designer

then opens the commitment and proves to the participants that the designer knows that

the modified code block contains an artificial bug (binding property).

Inserting an artificial bug with a certain probability can also be implemented with the

commitment scheme but needs a public source of randomness and thus ultimately also a

trusted third party (see Bonneau and Nikolaenko (2022) for an overview). To implement

this, the designer commits to a private key and flips a coin based on it and a public source

of randomness. At the end of the crowdsearch, the designer opens the commitment and

allows participants to verify the result of the coin flips and that the protocol was followed.

A third approach to reveal an artificial bug convincingly to the participants—irrespective

18

of whether it has been found or not—is to use zero-knowledge (ZK) proofs. The idea

is that before the start of a crowdsearch, the designer demonstrates the existence of a

artificial bug in the software, without revealing the location and underlying technique of

the bug. Hence, the designer can convince the participants of the artificial bug’s existence

without giving any hint on how to find it.

While this concept is attractive in theory, proving bugs in ZK in practical software

requires solving a variety of problems and engineering challenges. As pointed out by

Cuéllar et al. (2023), ZK frameworks must be able to compile proofs of bugs that require

many steps of execution. Moreover, it is necessary to efficiently create understandable

statements. Yet, recent advances in the development of proof-statement compilers show

promising progress as to how the existence of a bug can be proved without revealing

the details or the inputs that could be used to exploit the bug.12 For our problem, a ZK

proof is applicable, as the bug can be chosen to be particularly suitable to the applications

of the proof-statement compiler and supporting tools described in Cuéllar et al. (2023)

and Green et al. (2023). Hence, the inserted bug can be chosen such that a ZK proof

is available. Despite its requirements for sophisticated compilers, a key benefit of ZK

proofs over the previous two approaches is that participants can verify at the start of the

crowdsearch that an artificial bug exists rather than at the end.

While the three presented approaches can provide an implementation of artificial bugs

as envisioned, which approach is most useful will depend on the specific applications, as

well as on the reputation and engineering capabilities of the bug bounty designer.

7 Other Benefits of Artificial Bugs

Our paper suggests that inserting artificial bugs can be useful to the designer of bug

bounty programs. We have examined one such benefit, showing that artificial bugs al-

low the designer to incentivize participants at a lower cost. We conclude the paper by

discussing other potential benefits of artificial bugs.

12See Cuéllar et al. (2023); Green et al. (2023) and the survey on the applicability of ZKs in various
cases, Ernstberger et al. (2024).

19

First, artificial bugs can help screen invalid submissions, which saves the organization

costly resources on triage and verification. Bug bounty programs typically attract large

numbers of invalid submissions as security researchers incur relatively small marginal costs

to submit a report. Zhao et al. (2017) report that across major bug bounty platforms,

less than 25% of submissions are valid, creating tremendous inefficiency in the verification

efforts. Organizations can significantly reduce this inefficiency by prioritizing submissions

from researchers who also reported artificial bugs. In other words, artificial bugs can serve

as a badge for quality submissions.

Second, artificial bugs can be used to gauge participation in bug bounty programs. Or-

ganizations receive submissions of vulnerabilities but often cannot determine the number

of researchers currently engaging in their bug bounty program. To remedy this uncer-

tainty, artificial bugs can be used as entry checks or milestones in determining the number

of active researchers, as well as the extent to which they have probed the system.

Third, artificial bugs can be used to renew interest in the bug bounty program. An

empirical analysis of the HackerOne platform shows that bug bounty programs receive

less engagement—as proxied by the number of submissions—over time, since researchers

are attracted to newly published programs (Sridhar and Ng, 2021). Maillart et al. (2017)

show that this front-loading effect results in the probability of finding bugs decaying at a

rate 1/t0.4, where t is the time since the program was launched. Inserting artificial bugs

may help enhance interest in an otherwise unattractive program.

8 Conclusion

We have developed a simple device to improve the effectiveness of bug bounty systems.

The additional benefits outlined in the last section strengthen the proposal and establish

promising directions for future research into modeling, utilizing, and implementing the

insertion of artificial bugs into a bug bounty system.

20

References

Akgul, O., Eghtesad, T., Elazari, A., Gnawali, O., Grossklags, J., Mazurek, M. L.,
Votipka, D., and Laszka, A. (2023). Bug Hunters’ perspectives on the challenges and
benefits of the bug bounty ecosystem. In 32nd USENIX Security Symposium (USENIX
Security 23), pages 2275–2291, Anaheim, CA. USENIX Association.

Böhme, R. (2006). A Comparison of Market Approaches to Software Vulnerability Dis-
closure. In Müller, G., editor, Emerging Trends in Information and Communication
Security, Lecture Notes in Computer Science, pages 298–311, Berlin. Springer.

Böhme, R., Eckey, L., Moore, T., Narula, N., Ruffing, T., and Zohar, A. (2020). Re-
sponsible Vulnerability Disclosure in Cryptocurrencies. Communications of the ACM,
63(10):62–71.

Bonneau, J. and Nikolaenko, V. (2022). Public Randomness and
Randomness Beacons. https://a16zcrypto.com/posts/article/

public-randomness-and-randomness-beacons/.

Breidenbach, L., Daian, P., Tramèr, F., and Juels, A. (2018). Enter the Hydra: Towards
Principled Bug Bounties and Exploit-Resistant Smart Contracts. In 27th USENIX Se-
curity Symposium (USENIX Security 18), pages 1335–1352, Baltimore, MD. USENIX
Association.

Cuéllar, S., Harris, B., Parker, J., Pernsteiner, S., and Tromer, E. (2023). Cheesecloth:
Zero-Knowledge proofs of real world vulnerabilities. In 32nd USENIX Security Sym-
posium (USENIX Security 23), pages 6525–6540, Anaheim, CA. USENIX Association.

Dubey, P. (2013). The role of information in contests. Economics Letters, 120(2):160–163.

Ernstberger, J., Chaliasos, S., Zhou, L., Jovanovic, P., and Gervais, A. (2024). Do you
need a zero knowledge proof? Cryptology ePrint Archive, Paper 2024/050. https:

//eprint.iacr.org/2024/050.

Federal Department of Finance of Switzerland (2022). Federal administration procures
platform for bug bounty programmes [Press release]. https://www.admin.ch/gov/

en/start/documentation/media-releases.msg-id-89868.html.

Gersbach, H., Mamageishvili, A., and Pitsuwan, F. (2023a). Crowdsearch. CEPR Dis-
cussion Paper No. 18529.

Gersbach, H., Mamageishvili, A., and Pitsuwan, F. (2023b). Decentralized Attack Search
and the Design of Bug Bounty Schemes.

Ghosh, A. and Kleinberg, R. (2016). Optimal Contest Design for Simple Agents. ACM
Transactions on Economics and Computation, 4(4):22:1–22:41.

Goldreich, O. (2001). Foundations of Cryptography. Cambridge University Press.

Green, M., Hall-Andersen, M., Hennenfent, E., Kaptchuk, G., Perez, B., and Laer, G. V.
(2023). Efficient Proofs of Software Exploitability for Real-world Processors. In Pro-
ceedings on Privacy Enhancing Technologies, pages 627–640.

21

Laszka, A., Zhao, M., Malbari, A., and Grossklags, J. (2018). The Rules of Engagement
for Bug Bounty Programs. In Meiklejohn, S. and Sako, K., editors, Financial Cryptog-
raphy and Data Security, Lecture Notes in Computer Science, pages 138–159, Berlin,
Heidelberg. Springer.

Levin, D. and Smith, J. L. (1994). Equilibrium in Auctions with Entry. The American
Economic Review, 84(3):585–599.

Levy, P., Sarne, D., and Rochlin, I. (2017). Contest Design with Uncertain Performance
and Costly Participation. In Proceedings of the Twenty-Sixth International Joint Con-
ference on Artificial Intelligence, IJCAI 2017, pages 302–309.

Liu, B. and Lu, J. (2019). The optimal allocation of prizes in contests with costly entry.
International Journal of Industrial Organization, 66:137–161.

Maillart, T., Zhao, M., Grossklags, J., and Chuang, J. (2017). Given enough eyeballs,
all bugs are shallow? Revisiting Eric Raymond with bug bounty programs. Journal of
Cybersecurity, 3(2):81–90.

Malladi, S. S. and Subramanian, H. C. (2020). Bug Bounty Programs for Cybersecurity:
Practices, Issues, and Recommendations. IEEE Software, 37(1):31–39.

Moreno, D. and Wooders, J. (2011). Auctions with heterogeneous entry costs. The RAND
Journal of Economics, 42(2):313–336.

Sarne, D. and Lepioshkin, M. (2017). Effective Prize Structure for Simple Crowdsourcing
Contests with Participation Costs. In Fifth AAAI Conference on Human Computation
and Crowdsourcing.

Sridhar, K. and Ng, M. (2021). Hacking for good: Leveraging HackerOne data to develop
an economic model of Bug Bounties. Journal of Cybersecurity, 7(1):1–9.

Stallings, W. (2020). Cryptography and Network Security: Principles and Practice. Pear-
son, 8th edition.

Walshe, T. and Simpson, A. (2020). An Empirical Study of Bug Bounty Programs. In
2020 IEEE 2nd International Workshop on Intelligent Bug Fixing (IBF), pages 35–44.

Zhao, M., Laszka, A., and Grossklags, J. (2017). Devising Effective Policies for Bug-
Bounty Platforms and Security Vulnerability Discovery. Journal of Information Policy,
7:372–418.

Zrahia, A., Gandal, N., Markovich, S., and Riordan, M. H. (2022). The Simple Economics
of an External Shock on a Crowdsourced ‘Bug Bounty Platform’. Available at SSRN:
https://ssrn.com/abstract=4154516.

22

A Proofs

Proof of Lemma 1. First, we show that every equilibrium strategy is a threshold

strategy. Let σi : [c, c] → {0, 1} denote agent i’s strategy and let σ−i denote the strategy

profile of agents other than i. Given a strategy profile, the payoff of agent i is

ui(σi,σ−i, ci) = σi

(∑
l

vlµlp(σ−i; q
l) +

∑
k

vkap(σ−i; q
k
a)− ci

)
,

where p(σ−i; q) is the probability that agent i wins the prize corresponding to the bug

with complexity q, given the strategy σ−i of others.

Let σ∗
i be an equilibrium strategy for agent i. We prove by contradiction that σ∗

i is

non-increasing. Suppose that there exists a pair of costs c < c′ such that σ∗
i (c) = 0 and

σ∗
i (c

′) = 1. Given the private cost vector c = (c1, . . . , cn),

0 = E[ui(0, σ
∗
−i(c−i), ci)|ci = c] ≥ E[ui(1, σ

∗
−i(c−i, ci)|ci = c]

> E[ui(1, σ
∗
−i(c−i), ci)|ci = c′] ≥ E[ui(0, σ

∗
−i(c−i, ci)|ci = c′] = 0

where the first and the last inequalities follow from the definition of the equilibrium. The

strict inequality, which follows from the fact that ui is strictly decreasing in c leads to a

contradiction. Thus, any equilibrium strategy is a threshold strategy.

Furthermore, since we consider symmetric equilibrium, all agents use the same thresh-

old strategy denoted by c∗. In equilibrium, the agent with search cost at the threshold

must be indifferent between searching and not searching. Therefore, if the equilibrium

threshold lies in the interior of [c, c], it must hold that

c∗ =
∑
l

vlqlΦ(c∗; ql) +
∑
k

vkaΦ(c
∗; qka),

where Φ(ĉ; q) is the expectation of p(σ−i(c−i); q), given the cost distribution of the other

agents when they all use the threshold.

To conclude, note that Φ(ĉ; q) is decreasing in ĉ for every q ∈ (0, 1] because a higher

threshold adopted by the other agents increases their probability to search and find the

23

bug, which, in turn, must lower agent i’s probability of being rewarded for that particular

bug. It follows that Ψ is also decreasing in ĉ. Thus, if Ψ(c) ≤ c, every agent can only

expect to incur a loss by participating in the search regardless of his/her skills, and hence

c∗ = c. If Ψ(c) ≥ c, every agent can only profit by participating, and therefore c∗ = c.

Otherwise, we have that Ψ(c) < c and c < Ψ(c). By continuity and monotonicity of Ψ,

there exists a unique fixed point. This completes the proof.

Proof of Lemma 2. Suppose that (v∗, v∗a, q
∗
a) solves the designer’s problem (2) and

assume w.l.o.g. that q∗a ̸= 0 (else there is nothing to prove). Recall that the equilibrium

threshold is given by

c∗ =
∑
l

vl∗µlΦ(c∗; ql) +
∑
k

vk∗a Φ(c∗; qk∗a). (5)

Introduce k̃ ≡ argmaxk{qk∗a } and choose the new complexities q∗∗
a = (q1∗∗a , 0, . . . , 0) with

q1∗∗a = qk̃∗a . Moreover let v∗∗
a = (v1∗∗a , 0, . . . , 0) where the first prize is given by

v1∗∗a = vk̃∗a +

∑
k ̸=k̃ v

k∗
a P (c∗; qk∗a)

P (c∗; q1∗∗a)
.

Observe that with this choice, the second sum in equation (5) does not change, i.e.

∑
k

v∗ka Φ(c∗; q∗ka) =
∑
k

v∗∗ka Φ(c∗; q∗∗ka) = v1∗∗a Φ(c∗; q1∗∗a). (6)

Thus if we take v∗∗ = v∗ we obtain the same equilibrium threshold and therefore the

designer receives the same utility because of equation (6). Note that the boundary condi-

tions of (2) are satisfied since P (c∗; q) is increasing in q. Hence, it is sufficient to introduce

only one artificial bug.

Proof of Lemma 3. Recall that Φ(ĉ; q) is the probability that an agent wins the

prize for the bug with complexity q when participating. Since agents find a given bug

24

independently of other agents, we can write

Φ(ĉ; q) = q

n−1∑
k=0

{(
n

k

)
F (ĉ)k(1− F (ĉ))n−1−k

[
k∑

t=0

(
k

t

)
qt(1− q)k−t

t+ 1

]}

=
1− (1− qF (ĉ))n

nF (c)
=

P (ĉ; q)

nF (ĉ)
,

where we used a generalization of the binomial theorem twice. For details, see the proof

of Proposition 3 and Fact 1 in Gersbach et al. (2023a).

Proof of Lemma 4. Observe that the set of achievable equilibrium thresholds C(v) has

to be an interval since
∑

l v
lµlΦ(ĉ; ql) + vaΦ(ĉ; qa) is continuous. The smallest possible

value for ĉ is 0, which can be achieved by choosing va = 0, qa = 0 and vl = 0 ∀l.

Moreover for any l we know from Lemma 3 that

Φ(ĉ; ql) =
P (ĉ; ql)

nF (ĉ)
=

1− (1− qlF (ĉ))n

nF (ĉ)
≤ 1− (1− F (ĉ))n

nF (ĉ)
= Φ(ĉ; 1).

This, together with the fact that Φ(ĉ, 1) is decreasing in ĉ (see Proof of Lemma 3), tells

us that the highest ĉ ∈ C(v) is achieved by allocating all of the reward v to the finding

of an artificial bug with complexity qa = 1, i.e. maxC(v) = ca(v) with ca(v) the fixed

point of vΦ(ĉ, 1). Thus C(v) = [0, ca(v)].

Proof of Theorem 1. Recall that we can write the designer’s problem as

max
ĉ∈[0,ca(v)]

∑
l

wlµlP (ĉ; ql)− nF (ĉ)ĉ.

Taking the derivative with respect to ĉ leads to the first-order condition

d

dĉ

(∑
l

wlµlP (ĉ; ql)− nF (ĉ)ĉ

)
=
∑
l

d

dĉ

(
wlµl(1− (1− qlF (ĉ))n)− nF (ĉ)ĉ

)
=
∑
l

wlµln(1− qlF (ĉ))n−1)qlf(ĉ)− nf(ĉ)ĉ− nF (ĉ)

= 0,

25

where we used that P (ĉ; ql) = 1− (1− qlF (ĉ))n. By rearranging, we see that

ĉ =
∑
l

wlµlql(1− qlF (ĉ))n−1 − F (ĉ)

f(ĉ)
= Ω(ĉ),

i.e. ĉ is a fixed point of Ω. Note that (1− qlF (ĉ))n−1 is decreasing in ĉ and recall that we

assumed F/f is non-decreasing, and therefore Ω(ĉ) is decreasing in ĉ. Hence, Ω(ĉ) has a

unique fixed point c̃.

This fixed point has to be a maximum since the derivative is dW (ĉ)
dĉ

= nf(ĉ)(Ω(ĉ)− ĉ),

and therefore dW
dĉ

(ĉ) > 0 for ĉ < c̃ and dW
dĉ

(ĉ) < 0 for c̃ < ĉ. By Lemma 4, we know that

the set of achievable thresholds is C(v) = [0, ca(v)] and since the utility is increasing on

[0, c̃], the optimal achievable equilibrium threshold is ĉ∗ = min{c̃, ca(v)}. Using Lemma 1,

we can conclude that any prizes v∗, v∗a and complexity q∗a that solve ĉ
∗ =

∑
l v

lµlΦ(ĉ∗; ql)+

vaΦ(ĉ
∗; qa) are optimal.

Proof of Theorem 2. This theorem follows from the observation that not insert-

ing an artificial bug reduces the set of achievable equilibrium thresholds to C0(v) =

[0, c0(v)] ⊆ C(v). Since by Theorem 1, the optimal equilibrium threshold is given by

ĉ∗ = min{c̃, ca(v)} and c0(v) ≤ ca(v), this affects the optimal solution if and only if

c̃ > c0(v).

Proof of Lemma 5.

(i) Recall from Lemma 1 that for any bug with complexity q we have that Pn(ĉ; q) =

nF (ĉ)Φn(ĉ; q). Thus the equilibrium condition can be written as

cnnF (cn) =
∑
l

vlµlPn(cn; q
l) + vaPn(cn; qa). (7)

Assume by contradiction that limn→∞ cn is not equal to c. By using a generalized

binomial theorem, one can prove that Ψn(c) is decreasing in n. Therefore, cn has

to be decreasing in n. Hence, there has to exist some value c′ > c such that cn > c′

for any n ∈ N. In this case, cnnF (cn) > c′nF (c′). This holds because F is strictly

increasing. Note that F (c′) > 0, since c′ > c. Therefore, limn→∞ cnnF (cn) ≥

26

limn→∞ c′nF (c′) = ∞, which cannot be equal to

lim
n→∞

∑
l

vlµlPn(cn; q
l) + vaPn(cn; q

a) ≤
∑
l

vl + va,

i.e., we obtain a contradiction.

(ii) For the second part, we assume that nF (cn) converges as n → ∞ and denote

the limit by κ̃.13 Next define κ∗ ∈ (0,∞) as the unique fixed point of Ψ∞(κ̂) =∑
l v

lµl 1−e−qlκ̂

c
+ va

1−e−qaκ̂

c
. The fixed point exists since Ψ∞(0) = 0 and Ψ∞(κ̂) is

bounded by
∑

l v
l + va. Uniqueness follows from the fact that Ψ∞(κ̂) is strictly

increasing in κ̂. Thus, we only need to prove that κ∗ = κ̃. Note that for any

complexity q ∈ [0, 1] it holds that

lim
n→∞

(1− qF (cn))
n = lim

n→∞

[(
1− q

1/F (cn)

) 1
F (cn)

]nF (cn)

= e−qκ̃, (8)

by the fact that F (cn) → F (c) = 0, the definition of ex, and the continuity of the

function. Using this observation together with equation (7) from part (i) leads to

cκ̃ = lim
n→∞

cnnF (cn) = lim
n→∞

∑
l

vlµlPn(cn; q
l) + vaPn(cn; qa)

=
∑
l

vlµl lim
n→∞

(
1− (1− qlF (cn))

n
)
+ va lim

n→∞
(1− (1− qaF (cn))

n)

=
∑
l

vlµl(1− e−qlκ̃) + va(1− e−qaκ̃).

In particular, κ̃ is a fixed point of Ψ∞(κ̂) and by uniqueness we can conclude that

κ̃ = κ∗.

(iii) The proof of limn→∞ Pn(q) = 1− e−qκ∗
follows directly from equation (8).

Proof of Corollary 1. The corollary follows directly from Lemma 5.

13It can be proven that, under the maintained assumptions, nF (cn) converges by using the arguments
from Proposition 9 in Gersbach et al. (2023a).

27

Proof of Lemma 6. Observe that

Ψ∞(κ̂;v, va, qa) =
∑
l

vlµl 1− e−qlκ̂

c
+ va

1− e−qaκ̂

c

is increasing in κ̂ and qa. Thus, the lemma can be proven analogously to Lemma 4.

Proof of Theorem 3. As in the proof of Theorem 1, we use the first-order condition

d

dκ̂

(∑
l

wlµl
(
1− e−qlκ̂

)
− κ̂c

)
=
∑
l

wlµlqle−qlκ̂ − c = Ω∞(κ̂).

By assumption, we have Ω∞(0) ≥ 0 and Ω∞(κ̂) → −c as κ̂ → ∞, we obtain an unique

κ̃. The rest of the proof uses the same arguments as the proof of Theorem 1.

The proof of Theorem 4 requires the following lemma.

Lemma A.1. It holds that nF (ĉ∗n) → κ̂∗ as n → ∞.

Proof of Lemma A.1. Note that Ω(c) approaches −F (c)/f(c) for c > c as n goes to

infinity, while Ω(0) =
∑

l w
lqlµl for all n. Hence, ĉ∗n → c as n → ∞.

From here, we can apply the same arguments as in the proof of Proposition 9 in Gers-

bach et al. (2023a) by replacing V 1−(1−qF (cn))n

cn
with

∑
l v

lµl 1−(1−qlF (ĉ∗n))
n

ĉ∗n
+va

1−(1−qaF (ĉ∗n))
n

ĉ∗n

and V/c with v/c. In step 3, the argument still holds, due to the fact that the sum of

strictly monotone and continuous functions is also strictly monotone and continuous.

Proof of Theorem 4. For the proof of the theorem, we remove first the budget con-

straint for the prize for the first bug. Later, the constraint is reintroduced by taking

the intersection of Mn, respectively M∞, with a closed subset of RL+2, and therefore,

the convergence will not be affected. Take an arbitrary (v∗
n, v

∗
a,n, q

∗
a,n) ∈ Mn. Define

(v∗, v∗a, q
∗
a) ∈ M∞ by setting va = va,n, q

∗
a = q∗a,n, (v

2, . . . , vL) = (v2n, . . . , v
L
n) and

v1 =
c

µ1(1− e−q1κ̂∗)

(
κ̂∗c−

∑
l ̸=1

vlµl
(
1− e−qlκ̂∗

)
− va

(
1− e−qaκ̂∗))

.

28

Recall that v1n of the public program is given by

v1n =
ĉ∗n

µ1P (ĉ∗n; q1)

(
nF (ĉ∗n)ĉ

∗
n −

∑
l ̸=1

vlµlP (ĉ∗n; q
l)− vaP (ĉ∗n; qa)

)

and thus, by taking the limit for every summand separately and Lemma A.1, we obtain

lim
n→∞

v1 − v1n =
c

µ1(1− e−q1κ̂∗)
lim
n→∞

va
(
(1− e−qaκ̂∗

)− P (ĉ∗n; qa)
)
.

Since the sequence e−nx − (1 − x)n converges uniformly on bounded intervals and

qa ∈ [0, 1], the right-hand side converges uniformly, and therefore

sup
mm∈Mn

inf
m∈M∞

∥mn −m∥2 −→ 0, as n → ∞.

In the same way, one can prove that

sup
m∈M∞

inf
mn∈Mn

∥mn −m∥2 −→ 0, as n → ∞,

and therefore, d(Mn,M∞) → 0 in the Hausdorff distance.

Proof of Theorem 5. The proof of the first equivalence relation is analogous to the

proof of Theorem 2. For the second equivalence, note that κl(v) = limn→∞ nF (cln(v)) for

all l ∈ {1, . . . , L} by Lemma 5. Assume that κ̃ > κ0(v), which is equivalent to

lim
n→∞

min{nF (cn), nF (ca(v))} > lim
n→∞

max
l

{nF (cln(v))}.

This is the case exactly when there exists N , such that for all n ≥ N , we have

min{nF (cn), nF (ca(v))} > max
l

nF (cln(v)).

But is equivalent to c0,n(v) > c̃n for n ≥ N , since F (c) is strictly increasing in c as a

cumulative distribution function.

29

