

Quantifying Cyber Risk

Workshop on Real-life Impacts of Security Vulnerabilities

Rainer Böhme

Collegium Helveticum · Zürich · 18 April 2024

Preview

Agenda

1. Systematic review of cyber risk quantification studies

2. Towards a theory of security technology avoidance

Naively Linking Security to Harm

A fundamental law—more security, less harm?

"We find that investment in information technology (IT) security corresponds to a higher risk of data breach incidents within both a state and an industry."

R. Sen and S. Borle. Estimating the contextual risk of data breach: An empirical approach. *Journal of Management Information Systems*, 32 (2):314–341, 2015.

Naive Regressions

Naive Regressions

Iow-threat population

Arificial data from Woods & Böhme 2021

How to Model Cyber Risk?

Causal Model of Cyber Risk

Description of Latent Factors

Threat

The motivation, capability and activity of adversaries.

Surface exposure

Factors increasing potential vectors of compromise.

Preventive security

Interventions reducing the ease of compromise.

Compromise

Violation of a victim security goal.

Asset exposure

Factors increasing the value of what can be compromised.

Reactive security

Interventions reducing the impact of compromise.

Harm

Negative consequences resulting from compromise.

Classifying Studies

Extract from Table III in our SoK paper, which contains all classifications.

universität Innsbruck Rainer Böhme: Quantifying Cyber Risk · Workshop on Real-life Impacts of Security Vulnerabilities

Approaches Taken by Harm Studies

Unit of analysis	# of studies	Econ loss	Sample size	Earliest study	Earliest sample
Public reports	0				
Data breach	(9)	X	600-6160	2008	2000
Operational loss	3	\checkmark	341–1579	2015	< 2003
Cyber incident	1	\checkmark	2216	2016	2005
Private reports					
Internal incident	2	X	1800-23000	2010	1996
Insurance claim	1	X	70	2019	2015
Crime reports	1	\checkmark	7925	2020	2017
Firm survey response	3	\checkmark	664–4209	2012	2012
Individual survey response	e 5	\checkmark	1500–64287	2014	2010s
Externally observed					
Legal case	2	X	19–230	2011	1999
Legal case	1	\checkmark	118	2017	2010
Bitcoin transaction	3	\checkmark	10m	2014	2009
Criminal forum post	2	\checkmark	13m	2007	2006
Insurance prices	1	\checkmark	6828	2019	2007
Stock market reaction	(19)	\checkmark	43–542	2003	1988
System-wide harm					
Multi-party incident	1	\checkmark	800	2019	2008

Meta Review of Stock Market Reactions

Rainer Böhme: Ouantifving Cyber Risk · Workshop on Real-life Impacts of Security Vulnerabilities

Published Data Breaches 2007–2016

Data source: Privacy Rights Clearinghouse, own analysis following the method in Wheatley et al. 2016

Contradictory Data Breach Studies

Reference	# obs	Years	Breach frequency	Breach size
Curtin et al. (2008)	899	2005–07	1	?
Maillart et al. (2010)	956	2000–08	1	\rightarrow
Edwards et al. (2016)	2253	2005–15	\rightarrow	\rightarrow
Wheatley et al. (2016)	5365	2007–15	\rightarrow	1
Eling et al. (2017)	2266	2005–15		\rightarrow
Xu et al. (2018)	600	2005–17	1	\rightarrow
Wheatley et al. (2019)	1713	2005–17	\rightarrow	\rightarrow
Carfora et al. (2019)	5724	2005–17	1	?

Simplified version of Table II in our SoK paper.

Agenda

- 1. Systematic review of cyber risk quantification studies
- 2. Towards a theory of security technology avoidance

Asokan's Conjecture

Widespread negative perception from well-publicized vulnerabilities causes opportunity costs.

These costs come in at least two forms:

- **1.** Industry may prematurely pull technologies from deployment;
- 2. Students and early-career researchers may shy away from technology that was subject to claimed total breaks;

because they perceive it as too risky.

https://medium.com/@asokan.public/workshop-real-life-impacts-of-cyber-security-vulnerabilities-846f0fda62d2 (accessed 17 April 2024; abridged from the original)

Confirming Observations

SoK: Privacy-Enhancing Technologies in Finance

Carsten Baum 63 Technical University of Denmark, Lyngby, Denmar

James Hsin-yu Chiang El Aarlus University, Denmark Bermardo David El

Bernardo David 53 17 University of Copenhagen, Denmark Tore Kasper Frederiksen 53

Zama, Paris, France

- Abstract -

Been provide the one on the company of proceed of strateging the state of the state of the strateging of the strateging

In this first, we subprise the main testical and absurdable Hamilton algodiants there is the first hand to be described by the star of th

2012 ACM Subject Classification Security and privacy \rightarrow Cryptography

Reports and phrases DeFs, Anti-money locatering, MPC, FIRE, identity management, PETs Distal Disct Mentiller 10:4220/LIPIcs.AFT.2023.12

Related Version Fall Version: https://aprint.iacr.org/2023/122

Fasting Corbon Russes. For of the work on consistent we think produces the same state of the same sta

¹ Control Human, James Huinyu Chiang, Hernardu Earid, and Tare Kaaper Feedersheen; Brenzel andre Orezitz Consummars Lioneur CC 20 Y 14 0 10 Conference on Advances in Francemicon (JAT 2020). Efforts: Joseph Humanes and S. Matthew Woolsterg, Mellor No. 17, pp. 121–1230 (1994). Children Mellow Conference on A note on Trusted Execution Environments. Trusted Execution Environments (TEE) such as Intel's SGX are special modes of modern processors. A processor in its trusted execution setting guarantees that programs and their data are shielded from every other program running on the computer - even the operating system or any user having full access. A secure TEE allows to build many of the aforementioned PETs such as ZK proofs, PSI, MPC etc. "cheaply" and without additional cryptographic tools. In practice, SGX and similar technologies from other vendors⁵ are regularly broken and do not offer the protection that they claim. We therefore do not consider it as a PET in this document.

Contradicting Observations

IH'99 could be called the "Workshop on Watermarking Resistant to Lossy Compression." We know fairly well how to achieve this, but have no idea how to achieve real security against well targeted attacks on watermarks. Industry's hope of copy protection by watermarking either needs a real scientific breakthrough or a more realistic perspective.

Andreas Pfitzmann

Information Hiding 1998 (top) and 1999 (bottom); abridged from the original. Own estimates using Google Scholar ranges.

Towards Security Technology Avoidance

Idea: transfer a theory of consumer behavior to security expert behavior

Riek, M., Abramova, S., and Böhme, R. Analyzing Persistent Impact of Cybercrime on the Societal Level: Evidence for Individual Security Behavior. In *Proceedings of the Thirty Eigths International Conference on Information Systems* (ICIS). Seoul, 2017. **Riek, M.**, Böhme, R., and Moore, T. Measuring the Influence of Perceived Cybercrime Risk on Online Service Avoidance. *IEEE Transactions on Dependable and Secure Computing*, 13, 2 (2016), 261–273.

Concluding Remarks

State of the art

- Studies disagree on the harm resulting from cyber incidents.
- Studies inconsistently establish the effect size and even causal direction of security.
- Indicators of exposure tend to explain more variance than indicators of security.

Lessons for this seminar

- Despite 20+ years of effort, it remains hard to link vulnerabilities to harm.
- The opportunity cost of **security technology avoidance** may exceed the harm caused by occasional breaches.
- Negative language ("broken", if a distinguisher exists), amplified by popular media and opinionated experts, may cause undue security technology avoidance.
- Frameworks exits that can be adapted to support these conjectures with evidence.

Merci

to the organizers for the invitation and to the audience for their attention

rainer.boehme@uibk.ac.at

Part of this material is based on joint work with Svetlana Abramova, Markus Riek, and Daniel W. Woods.

References

1. Woods, D. W., and Böhme, R.

Systematization of Knowledge: Quantifying Cyber Risk. *IEEE Symposium on Security and Privacy*, (May 2021), 909–926.

2. Böhme, R., Laube, S., and Riek, M. A Fundamental Approach to Cyber Risk Analysis.

Variance, 12, 2 (2019), 161–185.

- Anderson, R., Barton, C., Böhme, R., et al.
 Measuring the Changing Cost of Cybercrime.
 Workshop on the Economics of Information Security (WEIS), Harvard, 2019.
- Tajalizadehkhoob, S., van Goethem, T., Korczyński, M., et al. Herding Vulnerable Cats: A Statistical Approach to Disentangle Joint Responsibility for Web Security in Shared Hosting. ACM Conference on Computer and Communication Security, Dallas, Texas, 2017.
- 5. Laube, S., and Böhme, R.

Strategic Aspects of Cyber Risk Information Sharing. *ACM Computing Surveys*, 50, 5 (2017), 77:1–77:36.

Measuring Latent Variables via Reflexive Indicators

Observing all security controls that collectively determine the security level is infeasible.

We can <u>infer</u> the latent security level using multiple controls as reflexive indicators.

Review

