What is the / () blockchain?
Ethereum Charts

results using bitcoin tech
Torrent of technical terms

- Mining
- Bitcoin
- Hard fork
- Permissionless
- Permissioned
- Proof of work
- Ethereum
- Byzantine Fault Tolerance
- Hyperledger
- Distributed Ledger Technology
Blockchains: Abstraction

Block 4
Block 3
Block 2
Block 1
Blockchains: Abstraction

#1 Strict ordering of messages

Block 1

Block 2
- message A
- message B
- message C
- ...
- message K

Block 3

Block 4
Blockchains: Abstraction

#1 Strict ordering of messages

- Message 1
- Message 2
- Message 3
- Message 4
Blockchains: Abstraction

#2 Rule-based write, global read

Write Permission: Rule-based

Read Permission:
Blockchains: Abstraction

#3 No message modification
Power of the Abstraction

“I, Alice, send 1 BTC to Bob --Signed Alice"
Power of the Abstraction

Message 1: “Alice gave Bob 1 BTC”
Message 2: “Bob gave Charlie 0.1 BTC”
Message 3: “Bob gave Dana 0.2 BTC”
Message 4: …

Alice: 2 BTC
Bob: 0.7 BTC
Charlie: 0.1 BTC
Dana: 0.2 BTC
…
Compare: Execution, clearing, and settlement

- For transfer of financial instruments
- Up to three days to complete (T+3)
- Many middlemen
- Fragmented records
- Difficult to audit
Blockchains are much faster...

Alice: 2 BTC
Bob: 0.7 BTC
Carol: 0.1 BTC
Dana: 0.2 BTC

“Bob gave Dana 0.2 BTC”
“Bob gave Carol 0.1 BTC”
“Alice gave Bob 1 BTC”
and more transparent...

Message 1: “Alice gave Bob 1 BTC”
Message 2: “Bob gave Carol 0.1 BTC”
Message 3: “Bob gave Dana 0.2 BTC”
Message 4: ...

Alice: 2 BTC
Bob: 0.7 BTC
Carol: 0.1 BTC
Dana: 0.2 BTC
...
Mail delivery in 19th-century United States

28 Oct. 1861

26 Oct. 1861
Shouldn’t blockchains just kill existing settlement systems?

28 Oct. 1861

26 Oct. 1861
Smart contracts

What is Bitcoin Script?

- Forth-like, stack-based VM, RPN
- 1 byte opcodes
- All values are variable length byte arrays
- Type interpreted by operations
- Only stack & alt-stack
- No return stack (no calls)
- No indirect addressing
- No memory references
- No off-stack reads/writes or I/O
What’s a smart contract?

- Code executed on blockchain
 ...in “Turing-complete” language
- Can operate on blockchain data + currency
- Code defines contract, e.g.,
 - Financial instrument
 - If GOOGL rises to $1,500 by 30 Aug. 2018, assign 10 shares from Alice to Bob and have Bob pay Alice $15,000
- Behavior and data are *publicly visible*
Simple smart contract: Lottery

Init:
- End := 30 June 2017
- ticket := 1
- pool := {}
- pot := 0

Ticket Purchase:
- On receiving $amt from some party P:
 - Assert $amt = ticket, balance[P] ≥ $amt
 - pot := pot + ticket
 - pool := pool ∪ P

Timer:
- If T > Tend then
 - W ∈ R pool

Lottery Contract Lottery
What’s a smart contract?

- Best known system: Ethereum
 - $25 Billion market cap
- Decentralized → autonomous: Correct execution enforced by network
What's a smart contract?

Best known example:

- **Ethereum**
- $25 billion market cap

Decentralized:

- Autonomous: Correct execution enforced by network

Abstraction:

Smart contract simulates trusted third party with public state
Virtual trusted third-party

Stock ticker: GOOGL = $1500

10 shares GOOGL

10 shares GOOGL

$15,000

$15,000
A simplified view

Stock ticker: GOOGL = $1500

$15,000 10 shares GOOGL

10 shares GOOGL $15,000
Smart contract systems rely on data feeds…

…digitally signed by (trustworthy) sources.
What can blockchains do?
Self-enforcing insurance policies

Gimme a $100 policy
(Flight #1215, 27 June 2017, Policy price: $1)

Flight Insurance

$100
New digital-goods marketplaces

Online game license

Steam Community Marketplace

Ether
...via sophisticated fair exchange

Blockchain

Steam Trader

...
Other things blockchains can do

• Blockchain + IoT
 • Szabo (1997): Smart contract locks you out of car if you miss auto loan payment

• Digital rights management
 • Automated, transparent royalty payments

• Supply-chain management
 • Tamperproof provenance tracking
 • + cryptocurrency → anti-corruption tool?
What can’t blockchains do?
IC3 Grand Challenges

- #1 Scaling
- #2 Correctness
- #3 Confidentiality
- #4 Strongly authenticated data
- #5 Safety and compliance
IC3 Grand Challenges

• #1 Scaling
• #2 Correctness
• #3 Confidentiality
• #4 Strongly authenticated data
• #5 Safety and compliance
High promise, but early days

- Main application of Ethereum?
 ...launching other cryptocurrencies
- E.g., Bancor
 - Cryptocurrency executed within a cryptocurrency for launching cryptocurrencies
- J. K. Galbraith: All financial innovation is leverage in a new disguise.
 - “The world of finance hails the invention of the wheel over and over again, often in a slightly more unstable version.”
- Tools for “private” (permissioned) blockchains
 - Caveat emptor!
Summary

• Blockchains will have a transformative effect on many industries, but…

• Scientific advances (e.g., in Grand Challenges) needed to fully unleash their power

• Today, careful scoping needed to reap blockchain benefits
To learn more:

www.initc3.org