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Ideas written up for IEEE CSF’16 [Arxiv 1605.08797]
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Computer Security is an Old, Tough Nut to Crack

Identified as a crucial problem since the 1950’s, at least.

Key concepts developed by the 1970’s and 1980’s.
- E.g., Software protection / access control (Lampson), 

and key security principles (Saltzer and Schroeder)

Haven’t made much progress since.  
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Computer Security in the Real World

Series of talks and papers between 2000 to 2005
- Butler Lampson, looking back over 30 years

➔ Computer security is even harder than real-world security

Software security is a form of correctness
- But, dealing with malicious adversaries, not (random) faults
- Any flaw can be reliably exploited, infinitely often
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Foundations of the Gold Standard of Security

Same key aspects in software construction & computer security 

In programming In security
Specification     = Security policy
Implementation = Enforcement mechanism
Correctness = Assurance
Methodology*    = Security model

* e.g., functional vs. declarative vs. imperative programming
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Data-driven Software Security

Writing policy (aka specs) is the hard bit
- Sometimes easy — e.g., in programmer-intent model 

used in control-flow and data-flow integrity work

Propose data-driven software security model 
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Why a Data-driven Approach to Software Security ?

Today’s computer software is not that of the 1960’s.
● 1000x larger, more complex, with “emergent properties”
● A “found artifact” for both developers and users
● Data-driven approaches are often successful (spam, AI)

Easy to use historical evidence for attack-surface reduction

Online, networked computing makes monitoring feasible
● Can possibly collect all the data, from all software uses
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Data-driven Software Security

Writing policy (aka specs) is the hard bit
- Sometimes easy — e.g., in programmer-intent model 

used in control-flow and data-flow integrity work

Propose data-driven software security model 
- Use historical evidence to guide enforcement
- Based on empirical programs that capture *all* 

security-relevant events ever seen, in all executions
- Easy to write policies: they just define what events are
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Data-driven Security vs. Access Control Models
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Data-driven Security vs. Access Control Models

Comprehensive audit logs are a key to policy & enforcement
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Data-driven Security vs. Information-flow Models

Comprehensive audit logs are a key to policy & enforcement
—same as with access control

/ update               / object
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Example Benefits

Microsoft Windows Solitaire game
● Has never used the networking libraries it includes

Heartbleed vulnerability in OpenSSL
● No TLS message ever had a huge heartbeat payload 

Linux keyctl kernel vulnerability CVE-2016-0728
● The keyctl system call isn’t used by ~any~ software 
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Applying Data-driven Software Security

Define empirical program abstraction
● What’s the program? (E.g., Linux binary, or C source code.)
● What’s a security-relevant event?  (E.g., an RPC message.)
● How are execution traces collected?  (E.g., as summaries.)

Set how policy interprets historical evidence.  And enforce!

For example: Focus on what *never* happens
● What system calls does it never make?
● What code & services does it never use?
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Empirical Programs must Capture *All* Executions

● Not enough training
data to capture the
long tail of behaviors

● Users and contexts
may vary widely

● If some behavior has never been seen—ever, in all 
executions—isn’t that a security violation or bug ?
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Bootstrapping Enforcement

➢ Utilize tests and old versions
➢ Build on Dev & Beta executions
➢ Integrate with update process
➢ Avoid Y2K surprises!

Code

SWEs

Test

Validate

Full Use

Alerts

Update
policy with
exception

Update
policy with
exception
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Three Challenges

1. How to monitor and collect data efficiently enough
○ Possible for system calls (alt-syscall, seccomp_bpf, SIGSYS)

2. How to collect data without violating users’ privacy

3. How to best make use of the data
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Learning Concrete Software Behavior with Privacy

What is software actually doing, on users’ computers?

WARNING: Just knowing syscalls can violate privacy!!
e.g., users calling decodeXdiv354 may be pirates.
- Must count across all software instances, with privacy!

Work with many collaborators at Google:
● Ananth Raghunathan, Ilya Mironov, Andy Chu, Giulia Fanti, Vasyl 

Pihur, Aleksandra Korolova, and more.
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Data Privacy

Based on
randomized
response

Used in
RAPPOR 
project at
Google
(now +Apple)
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Microdata: An Individual’s Report
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Microdata: An Individual’s Report with Privacy

Each bit is flipped with 
probability

25%
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Big Picture!
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Who on the Web is still using Silverlight?

netflix
ebay
intuit
amazon
live

Estimated by RAPPOR - A Privacy-Preserving Collection Mechanism
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RAPPOR: Learn user statistics with strong privacy

● Rigorous and meaningful privacy guarantees for users

● No central database (hackable, subpoenable) of user data

● User privacy does not depend on trusted third party

● No privacy externalities (e.g., from trackable user IDs)

Well-suited for sensitive user data such as URLs
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RAPPOR stats on Chrome homepages (over 90 days)

google
msn
avg
google tr
google br

30%

22.5%

7.5%
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Randomized response: Collecting a sensitive Boolean
Developed in the 1960s for sensitive surveys

“Are you now, or have ever been, a member of the 
National Fascist Party?”

- flip a coin, in private
- if coin lands heads, respond “YES”

 
- if coin lands tails, respond with the truth

(Unbiased) Estimate calculated as: 2( frac. “YES” - ½ )
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Randomized response: Collecting a sensitive Boolean
Developed in the 1960s for sensitive surveys

“Are you now, or have ever been, a member of the 
National Fascist Party?”

- flip a coin, in private
- if coin lands heads,

flip another coin to respond “YES” or “NO” unif. at random
- if coin lands tails, respond with the truth

(Unbiased) Estimate calculated as: 2( frac. “YES” - ¼ )
Now, satisfies differential privacy 
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Data-driven Least Privilege 

Principle of least privilege: “Only what you need”
- At any level, e.g., system calls to OS or service calls

But, modern software has libraries & code to do everything
- Can do all traces {a,b}* — like a LAMP stack
- Hardening (type-safety, CFI, etc.) doesn’t fix this

Data-driven: Experience shows what software needs
- Reduces possibilities down the “science of security” lattice
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A Data-driven Software Security Model

Worth considering:
A practical, simple way to increase software security

Existence proof: 
➢ Used in development of ChromeOS
➢ There, defended against CVE-2016-0728

Possibility for breaking the software insecurity status quo


