
Can Big Data
Bring Better Cyber Security to
the Software Engineering
Industry?
Úlfar Erlingsson
Security Research at Google

ETH Zürich, June 2017Úlfar Erlingsson

Ideas written up for IEEE CSF’16 [Arxiv 1605.08797]

ETH Zürich, June 2017Úlfar Erlingsson

Computer Security is an Old, Tough Nut to Crack

Identified as a crucial problem since the 1950’s, at least.

Key concepts developed by the 1970’s and 1980’s.
- E.g., Software protection / access control (Lampson),

and key security principles (Saltzer and Schroeder)

Haven’t made much progress since.

ETH Zürich, June 2017Úlfar Erlingsson

Computer Security in the Real World

Series of talks and papers between 2000 to 2005
- Butler Lampson, looking back over 30 years

➔ Computer security is even harder than real-world security

Software security is a form of correctness
- But, dealing with malicious adversaries, not (random) faults
- Any flaw can be reliably exploited, infinitely often

ETH Zürich, June 2017Úlfar Erlingsson

Foundations of the Gold Standard of Security

Same key aspects in software construction & computer security

In programming In security
Specification = Security policy
Implementation = Enforcement mechanism
Correctness = Assurance
Methodology* = Security model

* e.g., functional vs. declarative vs. imperative programming

ETH Zürich, June 2017Úlfar Erlingsson

Data-driven Software Security

Writing policy (aka specs) is the hard bit
- Sometimes easy — e.g., in programmer-intent model

used in control-flow and data-flow integrity work

Propose data-driven software security model

ETH Zürich, June 2017Úlfar Erlingsson

Why a Data-driven Approach to Software Security ?

Today’s computer software is not that of the 1960’s.
● 1000x larger, more complex, with “emergent properties”
● A “found artifact” for both developers and users
● Data-driven approaches are often successful (spam, AI)

Easy to use historical evidence for attack-surface reduction

Online, networked computing makes monitoring feasible
● Can possibly collect all the data, from all software uses

ETH Zürich, June 2017Úlfar Erlingsson

Data-driven Software Security

Writing policy (aka specs) is the hard bit
- Sometimes easy — e.g., in programmer-intent model

used in control-flow and data-flow integrity work

Propose data-driven software security model
- Use historical evidence to guide enforcement
- Based on empirical programs that capture *all*

security-relevant events ever seen, in all executions
- Easy to write policies: they just define what events are

ETH Zürich, June 2017Úlfar Erlingsson

Data-driven Security vs. Access Control Models

ETH Zürich, June 2017Úlfar Erlingsson

Data-driven Security vs. Access Control Models

Comprehensive audit logs are a key to policy & enforcement

ETH Zürich, June 2017Úlfar Erlingsson

Data-driven Security vs. Information-flow Models

Comprehensive audit logs are a key to policy & enforcement
—same as with access control

/ update / object

ETH Zürich, June 2017Úlfar Erlingsson

Example Benefits

Microsoft Windows Solitaire game
● Has never used the networking libraries it includes

Heartbleed vulnerability in OpenSSL
● No TLS message ever had a huge heartbeat payload

Linux keyctl kernel vulnerability CVE-2016-0728
● The keyctl system call isn’t used by ~any~ software

ETH Zürich, June 2017Úlfar Erlingsson

Applying Data-driven Software Security

Define empirical program abstraction
● What’s the program? (E.g., Linux binary, or C source code.)
● What’s a security-relevant event? (E.g., an RPC message.)
● How are execution traces collected? (E.g., as summaries.)

Set how policy interprets historical evidence. And enforce!

For example: Focus on what *never* happens
● What system calls does it never make?
● What code & services does it never use?

ETH Zürich, June 2017Úlfar Erlingsson

Empirical Programs must Capture *All* Executions

● Not enough training
data to capture the
long tail of behaviors

● Users and contexts
may vary widely

● If some behavior has never been seen—ever, in all
executions—isn’t that a security violation or bug ?

ETH Zürich, June 2017Úlfar Erlingsson

Bootstrapping Enforcement

➢ Utilize tests and old versions
➢ Build on Dev & Beta executions
➢ Integrate with update process
➢ Avoid Y2K surprises!

Code

SWEs

Test

Validate

Full Use

Alerts

Update
policy with
exception

Update
policy with
exception

ETH Zürich, June 2017Úlfar Erlingsson

Three Challenges

1. How to monitor and collect data efficiently enough
○ Possible for system calls (alt-syscall, seccomp_bpf, SIGSYS)

2. How to collect data without violating users’ privacy

3. How to best make use of the data

ETH Zürich, June 2017Úlfar Erlingsson

Learning Concrete Software Behavior with Privacy

What is software actually doing, on users’ computers?

WARNING: Just knowing syscalls can violate privacy!!
e.g., users calling decodeXdiv354 may be pirates.
- Must count across all software instances, with privacy!

Work with many collaborators at Google:
● Ananth Raghunathan, Ilya Mironov, Andy Chu, Giulia Fanti, Vasyl

Pihur, Aleksandra Korolova, and more.

ETH Zürich, June 2017Úlfar Erlingsson

Data Privacy

Based on
randomized
response

Used in
RAPPOR
project at
Google
(now +Apple)

ETH Zürich, June 2017Úlfar Erlingsson

Microdata: An Individual’s Report

ETH Zürich, June 2017Úlfar Erlingsson

Microdata: An Individual’s Report with Privacy

Each bit is flipped with
probability

25%

ETH Zürich, June 2017Úlfar Erlingsson

Big Picture!

ETH Zürich, June 2017Úlfar Erlingsson

Who on the Web is still using Silverlight?

netflix
ebay
intuit
amazon
live

Estimated by RAPPOR - A Privacy-Preserving Collection Mechanism

ETH Zürich, June 2017Úlfar Erlingsson

RAPPOR: Learn user statistics with strong privacy

● Rigorous and meaningful privacy guarantees for users

● No central database (hackable, subpoenable) of user data

● User privacy does not depend on trusted third party

● No privacy externalities (e.g., from trackable user IDs)

Well-suited for sensitive user data such as URLs

ETH Zürich, June 2017Úlfar Erlingsson

RAPPOR stats on Chrome homepages (over 90 days)

google
msn
avg
google tr
google br

30%

22.5%

7.5%

ETH Zürich, June 2017Úlfar Erlingsson

Randomized response: Collecting a sensitive Boolean
Developed in the 1960s for sensitive surveys

“Are you now, or have ever been, a member of the
National Fascist Party?”

- flip a coin, in private
- if coin lands heads, respond “YES”

- if coin lands tails, respond with the truth

(Unbiased) Estimate calculated as: 2(frac. “YES” - ½)

ETH Zürich, June 2017Úlfar Erlingsson

Randomized response: Collecting a sensitive Boolean
Developed in the 1960s for sensitive surveys

“Are you now, or have ever been, a member of the
National Fascist Party?”

- flip a coin, in private
- if coin lands heads,

flip another coin to respond “YES” or “NO” unif. at random
- if coin lands tails, respond with the truth

(Unbiased) Estimate calculated as: 2(frac. “YES” - ¼)
Now, satisfies differential privacy

ETH Zürich, June 2017Úlfar Erlingsson

Data-driven Least Privilege

Principle of least privilege: “Only what you need”
- At any level, e.g., system calls to OS or service calls

But, modern software has libraries & code to do everything
- Can do all traces {a,b}* — like a LAMP stack
- Hardening (type-safety, CFI, etc.) doesn’t fix this

Data-driven: Experience shows what software needs
- Reduces possibilities down the “science of security” lattice

ETH Zürich, June 2017Úlfar Erlingsson

A Data-driven Software Security Model

Worth considering:
A practical, simple way to increase software security

Existence proof:
➢ Used in development of ChromeOS
➢ There, defended against CVE-2016-0728

Possibility for breaking the software insecurity status quo

