
Asserting Access Tokens from the Transport Layer

Go Yamamoto, Richard Boyer, Kenji Takahashi (NTT), 

Nat Sakimura (NRI)

OAuth Security Workshop 2017



OVERVIEW

• Owners of critical Cyber-Physical systems may require stronger 

security model for authorization mechanisms than the current OAuth 

implementations offer.

• Reliability and resilience will be required when applications 

assumedly have vulnerability or when operators mistake.

• We propose discussion on delivery methods for access tokens from 

the transport layer.

• A proof of concept is shown that focuses on simplicity, and 

compatibility with existing OAuth infrastructure.



OAUTH FOR INDUSTRY

• The owner of a Physical System would like to add a set of REST APIs so 

that one can monitor/control the Physical System from the Internet domain.

• The owner would like to authorize the access using the OAuth framework.

Physical 

System

Cyber 

System

The Internet Domain

OAuth



OAUTH FOR INDUSTRY

• Are the bearer tokens on HTTP header acceptable for the owner who 

has concern on connecting Physical Systems?

• Probably no.  Why do we feel so?



THE SYSTEM OF SYSTEMS

5

• Systems obtain more advanced competence by connecting together.

• All the surviving systems will be connected at the end.

Source: “How Smart, Connected Products Are Transforming Competition,” HBR 2014



DIFFERENCE IN CONNECTIVITY

6

• Cloud Service Provider (CSP) provides computing power to Factory.

• Factory connects to CSP for better performance.

• Factory subscribes services from CSP, so the owner of Factory can request 

CSP to serve under the Factory’s security management.

Factory CSP



DIFFERENCE IN CONNECTIVITY

7

• Factory B provides parts for the products from Factory A.

• They connect their systems for each better performance.

• They collaborate, but will not be a part of the consolidated security 

management.

Factory A Factory B



THE EXONET CHALLENGE FOR CONNECTED SYSTEMS

8

1960 – 1995 (Client/Server)

Our Systems are local (Internal networks)

1995 – 2008 (Web)

Parts of our Systems were connected to the Internet (DMZ)

2008 – 2015 (Cloud)

Parts of our Systems move to ”as a service” (Public Providers)

2015 - now (IoT)

Parts of our Systems are in other networks, that we cannot impact (the “Exonet”)

Manage Permissions

Separate our networks from the Internet 

Manage our service provider risk

Manage our our security in someone else’s environment



CYBER-PHYSICAL SYSTEMS (CPS)

• Framework for Cyber-Physical Systems

– Published May 2016

– Audience: Designer, Builder, Verifier of CPS

– Goal

• Derive a unifying framework that covers the range of unique dimensions of CPS, 

smart systems that include engineered interacting networks of physical and 

computational components.

• Populate a significant portion of the CPS Framework with detail.

9



KEY ELEMENTS OF THE CPS FRAMEWORK 

• Specify the Domain of 

the target CPS

• For each Aspect in the 

Domain, formulate 

Concerns and analyze 

Facets

– Conceptualization

– Realization

– Assurance

10



CONCERNS FOR TRUSTWORTHINESS

A) Concern on reliability requires no unpredictable factors in the system.  

Active attackers affects unpredictably.

B) Concern on resilience requires minimal availability and recover 

processes under cyber-attacks.



SECURITY MODEL A

• Concern on reliability requires no unpredictable factors in the system.  

Active attackers affects unpredictable.

• Honest-but-curious attackers remain honest and impossible to turn active.

• Model A: Assuming attackers eavesdrop all the transcripts in the Internet 

domain, it requires no credentials are compromised that grant access to 

Resource Server.



SECURITY MODEL B

• Concern on resilience requires minimal availability and recover 

processes even under cyber-attacks.

• The impact of security incidents remains bounded and controllable.

• Model B: Assuming the access control mechanism on the application 

layer does not work at all, it requires the impact from possible 

unintended use of Resource Servers bounded and recoverable.



ACCESS TOKEN FROM THE TRANSPORT LAYER

+--------+                               +---------------+

|        |--(A)- Authorization Request ->|   Resource    |

|        |                               |     Owner     |

|        |<-(B)-- Authorization Grant ---|               |

|        |                               +---------------+

|        |

|        |                               +---------------+

|        |--(C)-- Authorization Grant -->| Authorization |

| Client |                               |     Server    |

|        |<-(D)----- Access Token -------|               |

|        |                               +---------------+

|        |

|        |                               +---------------+

|        |--(E)----- Access Token ------>|    Resource   |

|        |                               |     Server    |

|        |<-(F)--- Protected Resource ---|               |

+--------+                               +---------------+

Figure 1: Abstract Protocol Flow



ACCESS TOKEN FROM THE TRANSPORT LAYER

• We only change the delivery 

method for the token from the 

transport layer.

– The AuthZ Server contains a Private 

CA and issues certificates with the 

tokens embed.

– (D) is encapsulated in a client 

certificate signed by the CA.

– (E) becomes a TLS connection 

using the certificate.  No explicit 

transfer for the Token.

+--------+                               +---------------+

|        |--(A)- Authorization Request ->|   Resource    |

|        |                               |     Owner     |

|        |<-(B)-- Authorization Grant ---|               |

|        |                               +---------------+

|        |

|        |                               +---------------+

|        |--(C)-- Authorization Grant -->| Authorization |

| Client |                               |     Server    |

|        |<-(D)----- Access Token -------|               |

|        |                               +---------------+

|        |

|        |                               +---------------+

|        |--(E)----- Access Token ------>|    Resource   |

|        |                               |     Server    |

|        |<-(F)--- Protected Resource ---|               |

+--------+                               +---------------+

Figure 1: Abstract Protocol Flow

X.509 Certificate
Private CA

TLS with Client Certificate



FOR EXAMPLE 

1. Authorization Server (AS) maintains a private CA service as a part. 

2. On issuing an access token, AS embeds JWT to subjectAltName fields 
of X.509 Certificates and signs the certificate using the CA service. The 
certificate has short life as well as the corresponding JWT is.

3. Client receives from AS an X.509 Certificate in place of a JWT.

4. Client accesses to Resource Server (RS) using the X.509 Certificate as 
a Client Certificate. RS requires a valid client certificate to accept the 
access.

5. RS reproduces the JWT from the X.509 Certificate presented by the 
Client.



HOW IT PREVENTS PHISHING 

AS Fake RS True RS

Client

Certificate with Access Token

Embedded

TLS

With Token

Private Key

TLS fails



THE PROBLEMS SOLVED

• Satisfies MODEL A because the private key for the X.509 

certificate is not accessible from the application layer since the 

key is generated under the transport layer and stored there.

– It might be a good idea to add a boolean flag that enforces access token 

delivered from the transport layer.

• Satisfies MODEL B because it is only the entities with X.509 

certificates signed by AS that can connect to RS.  

– Track the log from AS that records identities and attributes for which AS 

signed the certificates, and execute the recovery process for each entities 

tracked.



IMPLEMENTATION MODEL

• Consider a typical microservice architecture.

Reverse 

Proxy
API 

Gateway

Physical 

System

Cyber 

System
The Internet Domain



IMPLEMENTATION MODEL

• Reverse proxy verifies the TLS certificate and recovers JWT for 

API Gateway or Resource Server on the back.

Reverse 

Proxy
API 

Gateway

Physical 

System

Cyber 

System
The Internet Domain

TLS HTTP gRPC

Resource Server

JWT



PROOF OF CONCEPT

• Embed JWT to X.509 Certificates

– Use SubjectAltName to store JWT tokens

[req] 

req_extensions = v3_req 

distinguished_name = req_distinguished_name

[req_distinguished_name] 

[ v3_req ] 

basicConstraints = CA:FALSE 

keyUsage = nonRepudiation, digitalSignature, keyEncipherment

subjectAltName = @alt_names

[alt_names] 

otherName.1 = msUPN;UTF8:${BEARER_TOKEN}



PROOF OF CONCEPT

• Recover JWT from X.509 Certificates

– Set Headers at Reverse Proxy using Apache httpd.

RequestHeader set Authorization "Bearer %{SSL_CLIENT_SAN_OTHER_msUPN_0}s"



THE TRUSTED TRANSPORT LAYER FOR CPS

• Reduce the complexity of Assurance in Trustworthiness

– Applications are always updated asynchronously

– Applications consist of variety of microservices with different technologies 

and design

• The complexity is critical for the connected systems.

23

Transport

AppApp

AC

App

Transport

App App App

AC: access control layer 



DISCUSSION

• What fields are the best for embedding JWT for access tokens? We are 

aware of RFC 5755, which extends fields for Attribute Certificate Profile 

for Authorization.  Are they better places?



DISCUSSION

• Refresh token.  We think refresh tokens can be embedded into X.509 

certificate in the same way.

• We may try another idea to use the X.509 certificates for refresh.

– Verifying a valid client certificate with an expired access token, AS re-issues the 

access token embedded in a new X.509 certificate.

– To enforce preventing refresh, add “allow-refresh” boolean flag to the certificate. 


