
Simplified Integration of OAuth 
into JavaScript Applications 
OAuth Security Workshop 2017
Jacob Ideskog – Curity.io

@jacobideskog

Copyright © 2017 Curity AB. All rights reserved



Bio

• Stockholm, Sweden
• Work with OAuth 2.0 and OpenID Connect projects exclusively
• Implemented OAuth 2.0 and OpenID connect servers
• Architected and deployed many OAuth and OpenID Connect 

based infrastructures
• Organizer of Nordic APIs and Stockholm Java Meetup

curity.io



The front-end struggle

• Developers still struggle with OAuth 2.0
• What endpoints to use
• What parameters to send
• Understanding the purpose of each token 

• Clients introspecting Access tokens
• Clients sending refresh tokens to the wrong party
• If using OIDC, sending ID Tokens

curity.io



Why are we trying to solve this

• Beyond the obvious reasons
• Implicit flow is not enough

• Loss of state
• All complexity moved over to the client
• No session management defined by the spec
• Only Access Token is not always sufficient

• Token Handler
• Pattern we’ve had to use many times for different customers

curity.io



History: Token Handler (meta client)

• Frameable (no need to leave the page)
• Keep authentication decoupled

• Longer lived tokens

OAuth	AS

Authentication	
Service

SPA	
Client

Token	Handler

curity.io



Token Handler

OAuth	AS

Authentication	
Service

SPA	
Client

Token	Handler

/authz

/token

FRAME

CODE

CODE

AT,	RT,	IDT

AT,	RT,	IDT

Landing	
page

postMessage (THT)

curity.io



Using the THT (Token Handler Token)

OAuth	AS

SPA	
Client Token	Handler

/introspect

API	
Gateway

API

THTTHT

AT
THT	=	AT	+	RT

AT

{…}

{…}

curity.io



Token Handler

Summary

Pros:
• Works around the standard

• Keeping the solution compliant-ish
• Can use of-the-shelf OAuth servers

Cons:
• Complicated
• Security concerns
• Aborting Authentication?
• Revoking tokens?
• Logout

curity.io



Lessons learned

• Front-end developers need dirt-simple integration
• Reduce number of parameters required
• Provide ready APIs (libs)
• Avoid duplication of tokens

• The SPA problem must be solved inside the OAuth server
• Possibility to strengthen client identity needed
• What the Token Handler might know, the AS should know

curity.io



The Assisted Token Flow

OAuth	AS

Client

/assisted-token
Hidden
iframe GET	/assisted-token?client_id=example.com

<html><script>
window.parent.postMessage(AT,	…)
</script></html>

AT

Example:	User	is	already	authenticated

1. Open	hidden	iframe	and	do	GET	on	the	assisted	token	endpoint	with	client_id
2. Assisted	token	endpoint	serves	page	that	performs	postMessage to	parent	frame
3. Parent	page	receive	event	with	AT	and	closes	iframe.

curity.io



Success postMessage

• The success postMessage should at least contain:
{
status:	"success",
access_token:	“ABCDEFGH”,
expires_in:	1499,
scope:	”read	write”

}

• Together with target domain:

channel.postMessage(data,	”https://origin_of_client");

curity.io

Add	ID	token	if	scope	includes	
openid



Authenticating

• If the user doesn’t have a session

1. The Client must be told, must be able to take action
2. Must work without the need for OIDC
3. Client cannot inspect child frame to find location, browser prohibits.

• Options
1. Let the client TIMEOUT 
2. prompt=none (respond with error if no session)
3. postMessage(“authenticating”,…

curity.io



The Assisted Token Flow

OAuth	AS

Client

/assisted-tokenHidden
iframe

GET	/assisted-token?client_id=example.com

<html>
<script>

window.parent.postMessage(“authenticating”)
</script>
<form>

<input name=username>
<input name=password>

</form>
</html>

Example:	Authenticating	user

1. Open	hidden	iframe	and	do	GET	on	the	assisted	token	endpoint	with	client_id
2. Assisted	token	endpoint	serves	page	that	performs	postMessage to	parent	frame	informing	about	the	

authentication	that	needs	to	take	place	
3. The	Client	library	can	then	close	the	hidden	iframe,	and	restart	the	flow	with	a	visible	frame.
4. RO	interacts	with	the	content	of	the	visible	frame

username

password

curity.io



Storing the token (Curity implementation)

• The Assisted Token endpoint stores the token in a cookie
• Criteria
• HTTP only, meaning that client-side scripts will not be able to access it
• Secure, Only transmitted over HTTPS 
• Use the domain of the AS and the path of the Assisted Token Endpoint
• Have an expiration time that is equal to that of the token 

• Benefit:
• Remove errors possible by front-end developers when storing token

curity.io



The Assisted Token Endpoint

• Why a new endpoint
• No overloading = fewer required parameters
• Clear separation from existing protocol

• Equivalent to new grant type

• Takes 1 parameter mandatory:
• client_id

• Optional parameters:
• scope
• for_origin (see table)
• reuse
• forceAuthN, freshness (OIDC overlay)

scope Issue	all	scopes	
configured	for	client	if	
empty

for_origin Required	if	more	than	
one	origin	is	configured	
on	client

reuse Reuse existing	session,	
default	true

forceAuthN,	freshness Require	new	
authentication	to	take	
place	(Open	ID	overlay)

curity.io



for_origin

• Not the same as redirect_uri
• The framer isn’t necessary the one to be callbacked during implicit flow.

• A client is REQUIRED to be configured with a for_origin.
• The domain from which the client is served.
• If more than one is configured, the client needs to send for_origin together 

with client_id.

• The AS can then ensure secure framing
• Using X-FRAME-OPTIONS (can only handle one origin)
• Also, server SHOULD respond with CSP headers (supports multiple origins)

curity.io



scope

• If no scope is requested:

• ALL configured scopes are returned

• Different from regular authorization + token endpoints
• Reason not to overload

• Needed for client simplicity

curity.io



Affects 

• Dynamic Client Registration spec
• Should be possible to request dynamically

• Metadata spec
• Assisted endpoint should be published
• grant_types_supported should include “assisted-token”

• No known effect on
• Introspection
• Revocation

curity.io



Client side code should be non-normative

• Specification should not define JavaScript API
• Leave open for implementation preferences
• Authentication dealt with depending on server
• Sessions not specified in OAuth so must leave open

• Psudo code examples should be provided

curity.io



Revoke and Logout

• The Assisted endpoint overloads revoke
• To avoid CORS on regular revoke endpoint

• Perform regular FORM POST in iframe with token to revoke
• postMessage response 

• Can be combined with session logout for OIDC

curity.io



Revoke

OAuth	AS

Client

/assisted-token/revoke
Hidden
iframe GET	/assisted-token/revoke

<html><script>
window.parent.postMessage(loaded,	…)
</script>
<form><input	type=”hidden”name=“token”/>
</form></html>revoked

1. Open	hidden	iframe	and	do	GET	on	the	assisted	token	revoke	endpoint	
2. When	loaded,	postMessage token	to	iframe
3. iframe	performs	POST	with	token	to	AS
4. AS	responds	with	new	postMEssage
5. Parent	page	receive	event	and	closes	iframe.

AT
loaded

POST	/assisted-token/revoke
token=ABCDE

<html><script>
window.parent.postMessage(revoked,	…)
</script>
<html>



Security considerations

• postMessage – protected by the browser to not send to the wrong origin. (REQUIRED)
• AS MUST postMessage to for_origin configured for Client
• Client MUST check that origin of event matches OAuth server’s origin

• X-FRAME-OPTIONS + CSP headers for framing (REQUIRED)
• Provides stronger client assertion than implicit flow

• iframe breakout JavaScript (last resort)

• Simplicity for developer (RECOMMENDATIONS)
• Libraries should assist with CORS setup
• Make sure jQuery (XHR) and others send token to whitelisted APIs

curity.io



Conclusion

• The front-end developers need all the help they can get
• Even 2-4 parameters in the implicit flow is hard (yes)
• A new flow that assists with OAuth is needed
• Should be possible to overlay with OpenID Connect
• Define wire protocol

• We propose to author a spec together with OAuth WG and 
contribute IP

curity.io



DEMO & Questions
Assisted Token in Curity



@jacobideskog

jacob.ideskog@curity.io

Copyright © 2017 Curity AB. All rights reserved


