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Brief Introduction to OAuth 2.0 and OpenID Connect

I OAuth 2.0: Authorizing third-party applications
(relying parties) to access resources

I Authorization Server hands out access token
to the relying party (RP)

I RP must be registered at the authorization server
I Used to access the resources at the resource provider
I Authorization server and resource provider may be the same
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Brief Introduction to OAuth 2.0 and OpenID Connect

I OpenID Connect builds an authentication layer on top
(single sign-on)

I Authorization server is now also an identity provider (IdP)

I IdP hands out an id token
I Signed Json Web Token (JWT)
I Asserts the user’s identity at the IdP
I Contains user info

I Can be combined with standard OAuth 2.0
I Both token (access token) and id token handed out
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Brief Introduction to OAuth 2.0 and OpenID Connect

Example id token:

{
” i s s ” : ” h t t p s : / / s e r v e r . example . com ” ,
”sub”: ”24400320”,
”aud”: ”s6BhdRkqt3”,
” nonce ” : ”n−0S6 WzA2Mj ” ,
” exp ” : 1311281970 ,
” i a t ” : 1311280970 ,
” a u t h t i m e ” : 1311280969
}
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Motivation of our work

I The IdP learns at which Relying Parties (RPs) the user logs in

I This does not respect the user’s privacy
I User’s activities over multiple RPs can be tracked
I User might not want anyone to know which service

they are using
I Especially if using the RP might provide sensitive information

I Alcoholics Anonymous
I Medical Forums

I Our solution: We propose a new mode that hides the
RP’s identity from the IdP

5



Motivation of our work

I The IdP learns at which Relying Parties (RPs) the user logs in

I This does not respect the user’s privacy

I User’s activities over multiple RPs can be tracked
I User might not want anyone to know which service

they are using
I Especially if using the RP might provide sensitive information

I Alcoholics Anonymous
I Medical Forums

I Our solution: We propose a new mode that hides the
RP’s identity from the IdP

5



Motivation of our work

I The IdP learns at which Relying Parties (RPs) the user logs in

I This does not respect the user’s privacy
I User’s activities over multiple RPs can be tracked
I User might not want anyone to know which service

they are using
I Especially if using the RP might provide sensitive information

I Alcoholics Anonymous
I Medical Forums

I Our solution: We propose a new mode that hides the
RP’s identity from the IdP

5



Motivation of our work

I The IdP learns at which Relying Parties (RPs) the user logs in

I This does not respect the user’s privacy
I User’s activities over multiple RPs can be tracked
I User might not want anyone to know which service

they are using
I Especially if using the RP might provide sensitive information

I Alcoholics Anonymous
I Medical Forums

I Our solution: We propose a new mode that hides the
RP’s identity from the IdP

5



Motivation of our work

I The IdP learns at which Relying Parties (RPs) the user logs in

I This does not respect the user’s privacy
I User’s activities over multiple RPs can be tracked
I User might not want anyone to know which service

they are using
I Especially if using the RP might provide sensitive information

I Alcoholics Anonymous
I Medical Forums

I Our solution: We propose a new mode that hides the
RP’s identity from the IdP

5



Incentives for participants

I Incentives for RPs to support the mode

I Provide sensitive service to users: Interested in user’s privacy
I Protect their own data: Number of accesses

I Incentives for IdPs to support the mode
I Data minimization (fulfill regulatory requirements)
I Improve public perception
I Distinguishing feature to attract privacy-interested users
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RP (client) User Agent Authorization Server

Access RP functionality

client id, redirect uri, ...

Forward:
client id, redirect uri, ...

Checks

Ask for user consent

User gives consent

token (in URI fragment)

Extract token

token

Access resource

msc OAuth 2 implicit flow
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Privacy and Security Goals

I Privacy towards IdP: IdP cannot distinguish between logins
to different RPs

I IdP cannot link repeated logins to the same RP
I IdP only sees that the user logs in to some RP

I Security: Equivalent security to the implicit mode
I All checks are still made and provide the same guarantees
I No RP should be able to use an id token to impersonate the

user at another RP
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Attacker model

I Honest-but-curious IdP

I IdP does not collude with the RP
I Trusted JavaScript on the IdP frontend

I Malicious RPs
I Regarding security properties, not privacy
I IdP does not collude even with malicious RPs

I Secure end-to-end channels (TLS)
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Problems to Solve

1. id token must only be valid for one RP

I Otherwise, any RP could forward it to impersonate the user
at another RP

I How can the IdP create an id token for one audience RP
without knowing for which RP?

2. User must give consent and redirect uri must be checked
I Requires client (RP) metadata to be looked up by the IdP
I How can this be done if the IdP does not know the

RP’s identity?
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Solution for the first problem

I Use a hashed pseudonym for the client id

I client id hash := h(client id, rp nonce, user nonce)
I rp nonce is the nonce sent by the RP (also exists in

regular mode)
I user nonce is generated by the user agent

I Only the client id hash is sent to the IdP server
I client id and rp nonce are sent by the RP in the URI fragment
I They are not forwarded to the IdP server
I Hash is computed in IdP JavaScript

I IdP hands out a private id token
I Contains no aud field but a private aud field containing the

client id hash
I Cannot be confused with a regular id token since aud field is

mandatory
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Solution for the first problem

Example private id token:

{
” i s s ” : ” h t t p s : / / s e r v e r . example . com ” ,
” sub ” : ”24400320” ,
”private aud”: ”96f6696e4024d65fcb018a8f71badd

313f06e1481f142b29d4ba6f307bfc00e0”,
” exp ” : 1311281970 ,
” i a t ” : 1311280970 ,
” a u t h t i m e ” : 1311280969
}
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Solution for the second problem

I Enable the RP to provide its own client metadata

I To ensure its validity, it must be signed by the IdP

I New parameter sent by the RP: client id binding
I JWT signed by the IdP
I Given to RP when it registers at the IdP
I Contains a client id with metadata belonging to that RP

I client id binding is used by user agent
I Sent in URI fragment
I Checks done by IdP JavaScript can access client id binding
I No need to look up metadata on the IdP server
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Solution for the second problem

Example client id binding :

{
”client id” : ” s6BhdRkqt3 ” ,
”client name” : ” Example RP” ,
”redirect uris” :

[ ” h t t p s : / / rp . example . org / c a l l b a c k ” ,
” h t t p s : / / rp . example . org / c a l l b a c k 2 ” ] ,

”logo uri” : ” h t t p s : / / rp . example . org / l o g o . png”
}

15



16



Privacy result

I client id hash contains randomly generated user nonce
I Looks random to the IdP

I No other parameters sent to the IdP
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Security preservation

I redirect uri check equivalent to regular implicit mode

I End-user consent equivalent to regular implicit mode

I Check of private aud equivalent to check of aud in regular
implicit mode

I rp nonce not explicitly part of private id token, but contained
in hash

I Modes in parallel: Messages cannot be confused
I private id token is not a valid id token
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Unsupportable OIDC Features

I OAuth access token

I Would require direct communication from RP to IdP
I Not possible to preserve privacy
I No UserInfo endpoint: Include all information in the

private id token

I Parameters that could violate privacy
I max age, acr values: Could be (close to) unique for RP
I id token hint: Allows logins to be linked together

I Client metadata related to id token generation
I e.g. id token signed response alg
I IdP cannot look them up
I Forwarding them could violate privacy
I Default values are used

I Pairwise subject identifier
I Distinct sub identifier for each (RP, user) pair
I To choose the right one the IdP must know the RP
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Questions for the Audience

I Are there any fundamental problems with the approach?

I How important are the unsupported features?
I Are there optional parameters that are often used in practice?
I What privacy do we lose by not supporting the pairwise subject

identifier?

I How realistic is the assumption to trust the JavaScript on the
IdP frontend?

I Is there a better way to accomplish the checks in the user
agent? (Browser extension probably not feasible)

I Would people (users, RPs, IdPs) be interested in this?
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