
A private mode for OpenID Connect

Sven Hammann Ralf Sasse David Basin

OAuth Security Workshop, July 2017

1

Brief Introduction to OAuth 2.0 and OpenID Connect

I OAuth 2.0: Authorizing third-party applications
(relying parties) to access resources

I Authorization Server hands out access token
to the relying party (RP)

I RP must be registered at the authorization server
I Used to access the resources at the resource provider
I Authorization server and resource provider may be the same

2

Brief Introduction to OAuth 2.0 and OpenID Connect

I OAuth 2.0: Authorizing third-party applications
(relying parties) to access resources

I Authorization Server hands out access token
to the relying party (RP)

I RP must be registered at the authorization server
I Used to access the resources at the resource provider
I Authorization server and resource provider may be the same

2

Brief Introduction to OAuth 2.0 and OpenID Connect

I OAuth 2.0: Authorizing third-party applications
(relying parties) to access resources

I Authorization Server hands out access token
to the relying party (RP)

I RP must be registered at the authorization server
I Used to access the resources at the resource provider
I Authorization server and resource provider may be the same

2

Brief Introduction to OAuth 2.0 and OpenID Connect

I OpenID Connect builds an authentication layer on top
(single sign-on)

I Authorization server is now also an identity provider (IdP)

I IdP hands out an id token
I Signed Json Web Token (JWT)
I Asserts the user’s identity at the IdP
I Contains user info

I Can be combined with standard OAuth 2.0
I Both token (access token) and id token handed out

3

Brief Introduction to OAuth 2.0 and OpenID Connect

I OpenID Connect builds an authentication layer on top
(single sign-on)

I Authorization server is now also an identity provider (IdP)

I IdP hands out an id token
I Signed Json Web Token (JWT)
I Asserts the user’s identity at the IdP
I Contains user info

I Can be combined with standard OAuth 2.0
I Both token (access token) and id token handed out

3

Brief Introduction to OAuth 2.0 and OpenID Connect

I OpenID Connect builds an authentication layer on top
(single sign-on)

I Authorization server is now also an identity provider (IdP)

I IdP hands out an id token

I Signed Json Web Token (JWT)
I Asserts the user’s identity at the IdP
I Contains user info

I Can be combined with standard OAuth 2.0
I Both token (access token) and id token handed out

3

Brief Introduction to OAuth 2.0 and OpenID Connect

I OpenID Connect builds an authentication layer on top
(single sign-on)

I Authorization server is now also an identity provider (IdP)

I IdP hands out an id token
I Signed Json Web Token (JWT)
I Asserts the user’s identity at the IdP
I Contains user info

I Can be combined with standard OAuth 2.0
I Both token (access token) and id token handed out

3

Brief Introduction to OAuth 2.0 and OpenID Connect

I OpenID Connect builds an authentication layer on top
(single sign-on)

I Authorization server is now also an identity provider (IdP)

I IdP hands out an id token
I Signed Json Web Token (JWT)
I Asserts the user’s identity at the IdP
I Contains user info

I Can be combined with standard OAuth 2.0
I Both token (access token) and id token handed out

3

Brief Introduction to OAuth 2.0 and OpenID Connect

Example id token:

{
” i s s ” : ” h t t p s : / / s e r v e r . example . com ” ,
”sub”: ”24400320”,
”aud”: ”s6BhdRkqt3”,
” nonce ” : ”n−0S6 WzA2Mj ” ,
” exp ” : 1311281970 ,
” i a t ” : 1311280970 ,
” a u t h t i m e ” : 1311280969
}

4

Motivation of our work

I The IdP learns at which Relying Parties (RPs) the user logs in

I This does not respect the user’s privacy
I User’s activities over multiple RPs can be tracked
I User might not want anyone to know which service

they are using
I Especially if using the RP might provide sensitive information

I Alcoholics Anonymous
I Medical Forums

I Our solution: We propose a new mode that hides the
RP’s identity from the IdP

5

Motivation of our work

I The IdP learns at which Relying Parties (RPs) the user logs in

I This does not respect the user’s privacy

I User’s activities over multiple RPs can be tracked
I User might not want anyone to know which service

they are using
I Especially if using the RP might provide sensitive information

I Alcoholics Anonymous
I Medical Forums

I Our solution: We propose a new mode that hides the
RP’s identity from the IdP

5

Motivation of our work

I The IdP learns at which Relying Parties (RPs) the user logs in

I This does not respect the user’s privacy
I User’s activities over multiple RPs can be tracked
I User might not want anyone to know which service

they are using
I Especially if using the RP might provide sensitive information

I Alcoholics Anonymous
I Medical Forums

I Our solution: We propose a new mode that hides the
RP’s identity from the IdP

5

Motivation of our work

I The IdP learns at which Relying Parties (RPs) the user logs in

I This does not respect the user’s privacy
I User’s activities over multiple RPs can be tracked
I User might not want anyone to know which service

they are using
I Especially if using the RP might provide sensitive information

I Alcoholics Anonymous
I Medical Forums

I Our solution: We propose a new mode that hides the
RP’s identity from the IdP

5

Motivation of our work

I The IdP learns at which Relying Parties (RPs) the user logs in

I This does not respect the user’s privacy
I User’s activities over multiple RPs can be tracked
I User might not want anyone to know which service

they are using
I Especially if using the RP might provide sensitive information

I Alcoholics Anonymous
I Medical Forums

I Our solution: We propose a new mode that hides the
RP’s identity from the IdP

5

Incentives for participants

I Incentives for RPs to support the mode

I Provide sensitive service to users: Interested in user’s privacy
I Protect their own data: Number of accesses

I Incentives for IdPs to support the mode
I Data minimization (fulfill regulatory requirements)
I Improve public perception
I Distinguishing feature to attract privacy-interested users

6

Incentives for participants

I Incentives for RPs to support the mode
I Provide sensitive service to users: Interested in user’s privacy
I Protect their own data: Number of accesses

I Incentives for IdPs to support the mode
I Data minimization (fulfill regulatory requirements)
I Improve public perception
I Distinguishing feature to attract privacy-interested users

6

Incentives for participants

I Incentives for RPs to support the mode
I Provide sensitive service to users: Interested in user’s privacy
I Protect their own data: Number of accesses

I Incentives for IdPs to support the mode

I Data minimization (fulfill regulatory requirements)
I Improve public perception
I Distinguishing feature to attract privacy-interested users

6

Incentives for participants

I Incentives for RPs to support the mode
I Provide sensitive service to users: Interested in user’s privacy
I Protect their own data: Number of accesses

I Incentives for IdPs to support the mode
I Data minimization (fulfill regulatory requirements)
I Improve public perception
I Distinguishing feature to attract privacy-interested users

6

RP (client) User Agent Authorization Server

Access RP functionality

client id, redirect uri, ...

Forward:
client id, redirect uri, ...

Checks

Ask for user consent

User gives consent

token (in URI fragment)

Extract token

token

Access resource

msc OAuth 2 implicit flow

7

8

Privacy and Security Goals

I Privacy towards IdP: IdP cannot distinguish between logins
to different RPs

I IdP cannot link repeated logins to the same RP
I IdP only sees that the user logs in to some RP

I Security: Equivalent security to the implicit mode
I All checks are still made and provide the same guarantees
I No RP should be able to use an id token to impersonate the

user at another RP

9

Privacy and Security Goals

I Privacy towards IdP: IdP cannot distinguish between logins
to different RPs

I IdP cannot link repeated logins to the same RP
I IdP only sees that the user logs in to some RP

I Security: Equivalent security to the implicit mode
I All checks are still made and provide the same guarantees
I No RP should be able to use an id token to impersonate the

user at another RP

9

Privacy and Security Goals

I Privacy towards IdP: IdP cannot distinguish between logins
to different RPs

I IdP cannot link repeated logins to the same RP
I IdP only sees that the user logs in to some RP

I Security: Equivalent security to the implicit mode

I All checks are still made and provide the same guarantees
I No RP should be able to use an id token to impersonate the

user at another RP

9

Privacy and Security Goals

I Privacy towards IdP: IdP cannot distinguish between logins
to different RPs

I IdP cannot link repeated logins to the same RP
I IdP only sees that the user logs in to some RP

I Security: Equivalent security to the implicit mode
I All checks are still made and provide the same guarantees
I No RP should be able to use an id token to impersonate the

user at another RP

9

Attacker model

I Honest-but-curious IdP

I IdP does not collude with the RP
I Trusted JavaScript on the IdP frontend

I Malicious RPs
I Regarding security properties, not privacy
I IdP does not collude even with malicious RPs

I Secure end-to-end channels (TLS)

10

Attacker model

I Honest-but-curious IdP
I IdP does not collude with the RP
I Trusted JavaScript on the IdP frontend

I Malicious RPs
I Regarding security properties, not privacy
I IdP does not collude even with malicious RPs

I Secure end-to-end channels (TLS)

10

Attacker model

I Honest-but-curious IdP
I IdP does not collude with the RP
I Trusted JavaScript on the IdP frontend

I Malicious RPs

I Regarding security properties, not privacy
I IdP does not collude even with malicious RPs

I Secure end-to-end channels (TLS)

10

Attacker model

I Honest-but-curious IdP
I IdP does not collude with the RP
I Trusted JavaScript on the IdP frontend

I Malicious RPs
I Regarding security properties, not privacy
I IdP does not collude even with malicious RPs

I Secure end-to-end channels (TLS)

10

Attacker model

I Honest-but-curious IdP
I IdP does not collude with the RP
I Trusted JavaScript on the IdP frontend

I Malicious RPs
I Regarding security properties, not privacy
I IdP does not collude even with malicious RPs

I Secure end-to-end channels (TLS)

10

Problems to Solve

1. id token must only be valid for one RP

I Otherwise, any RP could forward it to impersonate the user
at another RP

I How can the IdP create an id token for one audience RP
without knowing for which RP?

2. User must give consent and redirect uri must be checked
I Requires client (RP) metadata to be looked up by the IdP
I How can this be done if the IdP does not know the

RP’s identity?

11

Problems to Solve

1. id token must only be valid for one RP
I Otherwise, any RP could forward it to impersonate the user

at another RP

I How can the IdP create an id token for one audience RP
without knowing for which RP?

2. User must give consent and redirect uri must be checked
I Requires client (RP) metadata to be looked up by the IdP
I How can this be done if the IdP does not know the

RP’s identity?

11

Problems to Solve

1. id token must only be valid for one RP
I Otherwise, any RP could forward it to impersonate the user

at another RP
I How can the IdP create an id token for one audience RP

without knowing for which RP?

2. User must give consent and redirect uri must be checked
I Requires client (RP) metadata to be looked up by the IdP
I How can this be done if the IdP does not know the

RP’s identity?

11

Problems to Solve

1. id token must only be valid for one RP
I Otherwise, any RP could forward it to impersonate the user

at another RP
I How can the IdP create an id token for one audience RP

without knowing for which RP?

2. User must give consent and redirect uri must be checked

I Requires client (RP) metadata to be looked up by the IdP
I How can this be done if the IdP does not know the

RP’s identity?

11

Problems to Solve

1. id token must only be valid for one RP
I Otherwise, any RP could forward it to impersonate the user

at another RP
I How can the IdP create an id token for one audience RP

without knowing for which RP?

2. User must give consent and redirect uri must be checked
I Requires client (RP) metadata to be looked up by the IdP

I How can this be done if the IdP does not know the
RP’s identity?

11

Problems to Solve

1. id token must only be valid for one RP
I Otherwise, any RP could forward it to impersonate the user

at another RP
I How can the IdP create an id token for one audience RP

without knowing for which RP?

2. User must give consent and redirect uri must be checked
I Requires client (RP) metadata to be looked up by the IdP
I How can this be done if the IdP does not know the

RP’s identity?

11

Solution for the first problem

I Use a hashed pseudonym for the client id

I client id hash := h(client id, rp nonce, user nonce)
I rp nonce is the nonce sent by the RP (also exists in

regular mode)
I user nonce is generated by the user agent

I Only the client id hash is sent to the IdP server
I client id and rp nonce are sent by the RP in the URI fragment
I They are not forwarded to the IdP server
I Hash is computed in IdP JavaScript

I IdP hands out a private id token
I Contains no aud field but a private aud field containing the

client id hash
I Cannot be confused with a regular id token since aud field is

mandatory

12

Solution for the first problem

I Use a hashed pseudonym for the client id

I client id hash := h(client id, rp nonce, user nonce)

I rp nonce is the nonce sent by the RP (also exists in
regular mode)

I user nonce is generated by the user agent

I Only the client id hash is sent to the IdP server
I client id and rp nonce are sent by the RP in the URI fragment
I They are not forwarded to the IdP server
I Hash is computed in IdP JavaScript

I IdP hands out a private id token
I Contains no aud field but a private aud field containing the

client id hash
I Cannot be confused with a regular id token since aud field is

mandatory

12

Solution for the first problem

I Use a hashed pseudonym for the client id

I client id hash := h(client id, rp nonce, user nonce)
I rp nonce is the nonce sent by the RP (also exists in

regular mode)
I user nonce is generated by the user agent

I Only the client id hash is sent to the IdP server
I client id and rp nonce are sent by the RP in the URI fragment
I They are not forwarded to the IdP server
I Hash is computed in IdP JavaScript

I IdP hands out a private id token
I Contains no aud field but a private aud field containing the

client id hash
I Cannot be confused with a regular id token since aud field is

mandatory

12

Solution for the first problem

I Use a hashed pseudonym for the client id

I client id hash := h(client id, rp nonce, user nonce)
I rp nonce is the nonce sent by the RP (also exists in

regular mode)
I user nonce is generated by the user agent

I Only the client id hash is sent to the IdP server

I client id and rp nonce are sent by the RP in the URI fragment
I They are not forwarded to the IdP server
I Hash is computed in IdP JavaScript

I IdP hands out a private id token
I Contains no aud field but a private aud field containing the

client id hash
I Cannot be confused with a regular id token since aud field is

mandatory

12

Solution for the first problem

I Use a hashed pseudonym for the client id

I client id hash := h(client id, rp nonce, user nonce)
I rp nonce is the nonce sent by the RP (also exists in

regular mode)
I user nonce is generated by the user agent

I Only the client id hash is sent to the IdP server
I client id and rp nonce are sent by the RP in the URI fragment
I They are not forwarded to the IdP server
I Hash is computed in IdP JavaScript

I IdP hands out a private id token
I Contains no aud field but a private aud field containing the

client id hash
I Cannot be confused with a regular id token since aud field is

mandatory

12

Solution for the first problem

I Use a hashed pseudonym for the client id

I client id hash := h(client id, rp nonce, user nonce)
I rp nonce is the nonce sent by the RP (also exists in

regular mode)
I user nonce is generated by the user agent

I Only the client id hash is sent to the IdP server
I client id and rp nonce are sent by the RP in the URI fragment
I They are not forwarded to the IdP server
I Hash is computed in IdP JavaScript

I IdP hands out a private id token

I Contains no aud field but a private aud field containing the
client id hash

I Cannot be confused with a regular id token since aud field is
mandatory

12

Solution for the first problem

I Use a hashed pseudonym for the client id

I client id hash := h(client id, rp nonce, user nonce)
I rp nonce is the nonce sent by the RP (also exists in

regular mode)
I user nonce is generated by the user agent

I Only the client id hash is sent to the IdP server
I client id and rp nonce are sent by the RP in the URI fragment
I They are not forwarded to the IdP server
I Hash is computed in IdP JavaScript

I IdP hands out a private id token
I Contains no aud field but a private aud field containing the

client id hash
I Cannot be confused with a regular id token since aud field is

mandatory

12

Solution for the first problem

Example private id token:

{
” i s s ” : ” h t t p s : / / s e r v e r . example . com ” ,
” sub ” : ”24400320” ,
”private aud”: ”96f6696e4024d65fcb018a8f71badd

313f06e1481f142b29d4ba6f307bfc00e0”,
” exp ” : 1311281970 ,
” i a t ” : 1311280970 ,
” a u t h t i m e ” : 1311280969
}

13

Solution for the second problem

I Enable the RP to provide its own client metadata

I To ensure its validity, it must be signed by the IdP

I New parameter sent by the RP: client id binding
I JWT signed by the IdP
I Given to RP when it registers at the IdP
I Contains a client id with metadata belonging to that RP

I client id binding is used by user agent
I Sent in URI fragment
I Checks done by IdP JavaScript can access client id binding
I No need to look up metadata on the IdP server

14

Solution for the second problem

I Enable the RP to provide its own client metadata

I To ensure its validity, it must be signed by the IdP

I New parameter sent by the RP: client id binding
I JWT signed by the IdP
I Given to RP when it registers at the IdP
I Contains a client id with metadata belonging to that RP

I client id binding is used by user agent
I Sent in URI fragment
I Checks done by IdP JavaScript can access client id binding
I No need to look up metadata on the IdP server

14

Solution for the second problem

I Enable the RP to provide its own client metadata

I To ensure its validity, it must be signed by the IdP

I New parameter sent by the RP: client id binding

I JWT signed by the IdP
I Given to RP when it registers at the IdP
I Contains a client id with metadata belonging to that RP

I client id binding is used by user agent
I Sent in URI fragment
I Checks done by IdP JavaScript can access client id binding
I No need to look up metadata on the IdP server

14

Solution for the second problem

I Enable the RP to provide its own client metadata

I To ensure its validity, it must be signed by the IdP

I New parameter sent by the RP: client id binding
I JWT signed by the IdP
I Given to RP when it registers at the IdP
I Contains a client id with metadata belonging to that RP

I client id binding is used by user agent
I Sent in URI fragment
I Checks done by IdP JavaScript can access client id binding
I No need to look up metadata on the IdP server

14

Solution for the second problem

I Enable the RP to provide its own client metadata

I To ensure its validity, it must be signed by the IdP

I New parameter sent by the RP: client id binding
I JWT signed by the IdP
I Given to RP when it registers at the IdP
I Contains a client id with metadata belonging to that RP

I client id binding is used by user agent

I Sent in URI fragment
I Checks done by IdP JavaScript can access client id binding
I No need to look up metadata on the IdP server

14

Solution for the second problem

I Enable the RP to provide its own client metadata

I To ensure its validity, it must be signed by the IdP

I New parameter sent by the RP: client id binding
I JWT signed by the IdP
I Given to RP when it registers at the IdP
I Contains a client id with metadata belonging to that RP

I client id binding is used by user agent
I Sent in URI fragment
I Checks done by IdP JavaScript can access client id binding
I No need to look up metadata on the IdP server

14

Solution for the second problem

Example client id binding :

{
”client id” : ” s6BhdRkqt3 ” ,
”client name” : ” Example RP” ,
”redirect uris” :

[” h t t p s : / / rp . example . org / c a l l b a c k ” ,
” h t t p s : / / rp . example . org / c a l l b a c k 2 ”] ,

”logo uri” : ” h t t p s : / / rp . example . org / l o g o . png”
}

15

16

Privacy result

I client id hash contains randomly generated user nonce
I Looks random to the IdP

I No other parameters sent to the IdP

17

Privacy result

I client id hash contains randomly generated user nonce
I Looks random to the IdP

I No other parameters sent to the IdP

17

Security preservation

I redirect uri check equivalent to regular implicit mode

I End-user consent equivalent to regular implicit mode

I Check of private aud equivalent to check of aud in regular
implicit mode

I rp nonce not explicitly part of private id token, but contained
in hash

I Modes in parallel: Messages cannot be confused
I private id token is not a valid id token

18

Security preservation

I redirect uri check equivalent to regular implicit mode

I End-user consent equivalent to regular implicit mode

I Check of private aud equivalent to check of aud in regular
implicit mode

I rp nonce not explicitly part of private id token, but contained
in hash

I Modes in parallel: Messages cannot be confused
I private id token is not a valid id token

18

Security preservation

I redirect uri check equivalent to regular implicit mode

I End-user consent equivalent to regular implicit mode

I Check of private aud equivalent to check of aud in regular
implicit mode

I rp nonce not explicitly part of private id token, but contained
in hash

I Modes in parallel: Messages cannot be confused
I private id token is not a valid id token

18

Security preservation

I redirect uri check equivalent to regular implicit mode

I End-user consent equivalent to regular implicit mode

I Check of private aud equivalent to check of aud in regular
implicit mode

I rp nonce not explicitly part of private id token, but contained
in hash

I Modes in parallel: Messages cannot be confused
I private id token is not a valid id token

18

Security preservation

I redirect uri check equivalent to regular implicit mode

I End-user consent equivalent to regular implicit mode

I Check of private aud equivalent to check of aud in regular
implicit mode

I rp nonce not explicitly part of private id token, but contained
in hash

I Modes in parallel: Messages cannot be confused
I private id token is not a valid id token

18

Unsupportable OIDC Features

I OAuth access token

I Would require direct communication from RP to IdP
I Not possible to preserve privacy
I No UserInfo endpoint: Include all information in the

private id token

I Parameters that could violate privacy
I max age, acr values: Could be (close to) unique for RP
I id token hint: Allows logins to be linked together

I Client metadata related to id token generation
I e.g. id token signed response alg
I IdP cannot look them up
I Forwarding them could violate privacy
I Default values are used

I Pairwise subject identifier
I Distinct sub identifier for each (RP, user) pair
I To choose the right one the IdP must know the RP

19

Unsupportable OIDC Features

I OAuth access token
I Would require direct communication from RP to IdP
I Not possible to preserve privacy
I No UserInfo endpoint: Include all information in the

private id token

I Parameters that could violate privacy
I max age, acr values: Could be (close to) unique for RP
I id token hint: Allows logins to be linked together

I Client metadata related to id token generation
I e.g. id token signed response alg
I IdP cannot look them up
I Forwarding them could violate privacy
I Default values are used

I Pairwise subject identifier
I Distinct sub identifier for each (RP, user) pair
I To choose the right one the IdP must know the RP

19

Unsupportable OIDC Features

I OAuth access token
I Would require direct communication from RP to IdP
I Not possible to preserve privacy
I No UserInfo endpoint: Include all information in the

private id token

I Parameters that could violate privacy

I max age, acr values: Could be (close to) unique for RP
I id token hint: Allows logins to be linked together

I Client metadata related to id token generation
I e.g. id token signed response alg
I IdP cannot look them up
I Forwarding them could violate privacy
I Default values are used

I Pairwise subject identifier
I Distinct sub identifier for each (RP, user) pair
I To choose the right one the IdP must know the RP

19

Unsupportable OIDC Features

I OAuth access token
I Would require direct communication from RP to IdP
I Not possible to preserve privacy
I No UserInfo endpoint: Include all information in the

private id token

I Parameters that could violate privacy
I max age, acr values: Could be (close to) unique for RP
I id token hint: Allows logins to be linked together

I Client metadata related to id token generation
I e.g. id token signed response alg
I IdP cannot look them up
I Forwarding them could violate privacy
I Default values are used

I Pairwise subject identifier
I Distinct sub identifier for each (RP, user) pair
I To choose the right one the IdP must know the RP

19

Unsupportable OIDC Features

I OAuth access token
I Would require direct communication from RP to IdP
I Not possible to preserve privacy
I No UserInfo endpoint: Include all information in the

private id token

I Parameters that could violate privacy
I max age, acr values: Could be (close to) unique for RP
I id token hint: Allows logins to be linked together

I Client metadata related to id token generation

I e.g. id token signed response alg
I IdP cannot look them up
I Forwarding them could violate privacy
I Default values are used

I Pairwise subject identifier
I Distinct sub identifier for each (RP, user) pair
I To choose the right one the IdP must know the RP

19

Unsupportable OIDC Features

I OAuth access token
I Would require direct communication from RP to IdP
I Not possible to preserve privacy
I No UserInfo endpoint: Include all information in the

private id token

I Parameters that could violate privacy
I max age, acr values: Could be (close to) unique for RP
I id token hint: Allows logins to be linked together

I Client metadata related to id token generation
I e.g. id token signed response alg
I IdP cannot look them up
I Forwarding them could violate privacy
I Default values are used

I Pairwise subject identifier
I Distinct sub identifier for each (RP, user) pair
I To choose the right one the IdP must know the RP

19

Unsupportable OIDC Features

I OAuth access token
I Would require direct communication from RP to IdP
I Not possible to preserve privacy
I No UserInfo endpoint: Include all information in the

private id token

I Parameters that could violate privacy
I max age, acr values: Could be (close to) unique for RP
I id token hint: Allows logins to be linked together

I Client metadata related to id token generation
I e.g. id token signed response alg
I IdP cannot look them up
I Forwarding them could violate privacy
I Default values are used

I Pairwise subject identifier

I Distinct sub identifier for each (RP, user) pair
I To choose the right one the IdP must know the RP

19

Unsupportable OIDC Features

I OAuth access token
I Would require direct communication from RP to IdP
I Not possible to preserve privacy
I No UserInfo endpoint: Include all information in the

private id token

I Parameters that could violate privacy
I max age, acr values: Could be (close to) unique for RP
I id token hint: Allows logins to be linked together

I Client metadata related to id token generation
I e.g. id token signed response alg
I IdP cannot look them up
I Forwarding them could violate privacy
I Default values are used

I Pairwise subject identifier
I Distinct sub identifier for each (RP, user) pair
I To choose the right one the IdP must know the RP

19

Questions for the Audience

I Are there any fundamental problems with the approach?

I How important are the unsupported features?
I Are there optional parameters that are often used in practice?
I What privacy do we lose by not supporting the pairwise subject

identifier?

I How realistic is the assumption to trust the JavaScript on the
IdP frontend?

I Is there a better way to accomplish the checks in the user
agent? (Browser extension probably not feasible)

I Would people (users, RPs, IdPs) be interested in this?

20

Questions for the Audience

I Are there any fundamental problems with the approach?

I How important are the unsupported features?

I Are there optional parameters that are often used in practice?
I What privacy do we lose by not supporting the pairwise subject

identifier?

I How realistic is the assumption to trust the JavaScript on the
IdP frontend?

I Is there a better way to accomplish the checks in the user
agent? (Browser extension probably not feasible)

I Would people (users, RPs, IdPs) be interested in this?

20

Questions for the Audience

I Are there any fundamental problems with the approach?

I How important are the unsupported features?
I Are there optional parameters that are often used in practice?
I What privacy do we lose by not supporting the pairwise subject

identifier?

I How realistic is the assumption to trust the JavaScript on the
IdP frontend?

I Is there a better way to accomplish the checks in the user
agent? (Browser extension probably not feasible)

I Would people (users, RPs, IdPs) be interested in this?

20

Questions for the Audience

I Are there any fundamental problems with the approach?

I How important are the unsupported features?
I Are there optional parameters that are often used in practice?
I What privacy do we lose by not supporting the pairwise subject

identifier?

I How realistic is the assumption to trust the JavaScript on the
IdP frontend?

I Is there a better way to accomplish the checks in the user
agent? (Browser extension probably not feasible)

I Would people (users, RPs, IdPs) be interested in this?

20

Questions for the Audience

I Are there any fundamental problems with the approach?

I How important are the unsupported features?
I Are there optional parameters that are often used in practice?
I What privacy do we lose by not supporting the pairwise subject

identifier?

I How realistic is the assumption to trust the JavaScript on the
IdP frontend?

I Is there a better way to accomplish the checks in the user
agent? (Browser extension probably not feasible)

I Would people (users, RPs, IdPs) be interested in this?

20

Questions for the Audience

I Are there any fundamental problems with the approach?

I How important are the unsupported features?
I Are there optional parameters that are often used in practice?
I What privacy do we lose by not supporting the pairwise subject

identifier?

I How realistic is the assumption to trust the JavaScript on the
IdP frontend?

I Is there a better way to accomplish the checks in the user
agent? (Browser extension probably not feasible)

I Would people (users, RPs, IdPs) be interested in this?

20

	Introduction
	Brief Introduction to OAuth 2.0 and OpenID Connect
	Goal and Model
	Privacy and Security Goals
	Attacker model

	Main Ideas
	Protocol
	Protocol Overview

	Analysis

