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TLS: Transport Layer Security

The purpose of TLS:
To provide a secure channel to transfer messages

Cas Cremers https://www.google.com/



TLS is super secure!



TLS is super secure!

Currently under development: TLS 1.3



TLS 1.3 goals?

● Get rid of older features
– Ciphersuites, non-PFS, ...

● Reduce initial communication cost
– The 0-RTT minefield

● Clean up design

● Involve more specialists for more assurance

Could have been called TLS 2...



TLS 1.3

(a) Initial (EC)DHE handshake (b) 0-RTT handshake

(c) PSK-resumption handshake (+PSK-DHE)



Post-handshake client authentication

● Most common TLS use: unilateral authentication

● In some scenarios, we would like to later
upgrade a connection to mutually authenticated

● TLS 1.2: Renegotiation

● TLS 1.3: Post-handshake client authentication
– A.k.a. delayed authentication



Post-handshake client authentication: 
TLS 1.3 Rev 10

Client Server

{ session_hash, Cert_C }sk(C)

Please authenticate



Session hash from ECDH handshake
TLS 1.3 Rev 10

Client

Cert_S

Server

nc, g^x
ns, g^y, Cert_S

Session hash contains Cert_S, client and server nonces, ...

{ session_hash, Cert_C }sk(C)

Please authenticate
(Encrypted with 
key from ECDH)



Session hash from PSK[-DHE] mode
TLS 1.3 Rev 10

k

Client

k

Server

nc, [g^x]
ns, [g^y]

Session hash contains Cert_S, client and server nonces, ...



Formal analysis using
the Tamarin Prover?



Scyther vs Tamarin
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Tamarin prover: main ingredients

● More expressive input language
– Models with loops, branching
– Property specification in a fragment of first-order 

logic with quantification over timepoints
● More powerful analysis techniques

– Constraint-solving backend
– User can inspect (partial) proofs
– User can provide invariants (“hints”) to the prover





Selected case studies

● Key exchange
– Naxos
– Signed DH
– KEA+
– UM
– Tsx

● Group protocols
– GDH
– TAK
– (Sig)Joux
– STR

● ID-based AKE
– RYY
– Scott
– Chen-Kudla

● Loops
– TESLA1 & 2 

● Non-monotonic global state
– Keyserver
– Envelope
– Exclusive secrets
– Contract signing
– Security device/HSMs
– YubiKey
– YubiHSM
– Vehicle-to-vehicle/automotive

● PKI with strong guarantees
– ARPKI (also global state)

● Transparency
– DECIM (also global state)

● Etc etc.



Formal analysis possible?

● Modeled the TLS 1.3 specification under 
development
– at this time: draft 10

● Goal: verify the core security properties of TLS 
1.3

Thyla van der Merwe – Sam Scott – Marko Horvat – Jonathan Hoyland – Cas Cremers



Step 1: Building a model



Step 1: Building a model



Step 1: Building a model



Step 2: Encoding security properties

secret_session_keys:
(1) „All actor peer role k #i.
(2)  SessionKey(actor, peer, role, <k, 'authenticated'>)@i
(3)  & not ( (Ex #r. RevLtk(peer)@r  & #r < #i)
           | (Ex #r. RevLtk(actor)@r & #r < #i))
(4)  ==> not Ex #j. K(k)@j“

● This says…
– For all possible values of variables on the first line (1)

– if key k is accepted at time point i (2), and

– the adversary has not revealed the long term keys of the actor or the peer 
before the key is accepted (3)

– then the adversary cannot derive the key (4)

Want to show that this holds for all combinations of client, server, and 
adversary behaviours – ALL traces!



The adversary’s view



Step 3: Proving security properties

SessionKey(...)

eventually will 
boil down to 
needing to 
break DH

What can the 
adversary do?

What can the 
adversary do?and so on...

C2_No_Auth

C2_Auth

S2_Auth

S2



Revision 10 Initial results:
looks good!



Attacking client authentication (revision 10+)

Tamarin finds
an attack!



Problem 1

● Post-handshake client authentication looks 
good… until composed with everything else



Cert_C
Client IAmGreat.com

ECDH
(auth IamGreat.com)

Client Twitter.com

ECDH
(auth Twitter)

Drop connections;  psk1 ≠ psk1’ 

Both session hashes: h(nc,ns,…)

nc
nsk1

nc
ns k1’

nc
ns

k2 k2’{ session_hash,
Cert_C }sk(C)

Authenticate?

{ session_hash, 
Cert_C }sk(C)

Authenticate?

signature

Act as C

Adversary



Observations

● Prime example of an attack that can arise 
because of the interaction of modes

● Very complex attack
– requires 18 messages to set up

– involves 2 handshakes, 2 resumptions, 1 client 
authentication…

● Found by Tamarin
– We didn’t see it coming at all



Problem 2

● Post-handshake client auth:

● While the server waits for a response,
data can still go back and forth...



What does the client know?
Post-handshake client auth

{ session_hash, Cert_C }sk(C)

Please authenticate

Issue: server and client can still exchange data while server waits for post-handshake 
client authentication response.
At some point, server may receive the response and consider the connection to be 
mutually authenticated. However, the client has no way of knowing when or even if this 
happened.
(Needs to ask application layer!)



What does the client know?
Mutual authentication mode

Cert_C

Client

Cert_S

Server

nc, g^x
ns, g^y, Cert_S, please auth

Cert_C
Finished

Spec allows:
I don’t accept 

that Cert but will
continue anyway

Client can’t tell difference
between “accept” and
“reject but continue”



Awkward handshake

● Even if
– The server asks for a certificate

– The client provides it

– The server sends/accepts subsequent traffic

● then the client can still not be sure that
the server thinks the client is authenticated



● TLS 1.3 and authentication
– Authentication is still complicated!

– We became more involved in the process
(we’re now official contributors to the TLS 1.3 RFC)

● The future
– Real-world complexity remains challenging

– Improving scope: scaling our algorithms

– Improving accuracy: integrate more crypto insights
cas.cremers@cs.ox.ac.uk

Conclusions
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