
Automated analysis and the
subtleties of authentication

Adventures in TLS 1.3

Cas Cremers
OAUTH Workshop, July 2017, Zurich, Switzerland
Based on joint work with Thyla van der Merwe, Sam Scott, Marko Horvat, and Jonathan Hoyland

TLS: Transport Layer Security

The purpose of TLS:
To provide a secure channel to transfer messages

Cas Cremers https://www.google.com/

TLS is super secure!

TLS is super secure!

Currently under development: TLS 1.3

TLS 1.3 goals?

● Get rid of older features
– Ciphersuites, non-PFS, ...

● Reduce initial communication cost
– The 0-RTT minefield

● Clean up design

● Involve more specialists for more assurance

Could have been called TLS 2...

TLS 1.3

(a) Initial (EC)DHE handshake (b) 0-RTT handshake

(c) PSK-resumption handshake (+PSK-DHE)

Post-handshake client authentication

● Most common TLS use: unilateral authentication

● In some scenarios, we would like to later
upgrade a connection to mutually authenticated

● TLS 1.2: Renegotiation

● TLS 1.3: Post-handshake client authentication
– A.k.a. delayed authentication

Post-handshake client authentication:
TLS 1.3 Rev 10

Client Server

{ session_hash, Cert_C }sk(C)

Please authenticate

Session hash from ECDH handshake
TLS 1.3 Rev 10

Client

Cert_S

Server

nc, g^x
ns, g^y, Cert_S

Session hash contains Cert_S, client and server nonces, ...

{ session_hash, Cert_C }sk(C)

Please authenticate
(Encrypted with
key from ECDH)

Session hash from PSK[-DHE] mode
TLS 1.3 Rev 10

k

Client

k

Server

nc, [g^x]
ns, [g^y]

Session hash contains Cert_S, client and server nonces, ...

Formal analysis using
the Tamarin Prover?

Scyther vs Tamarin

Simon Meier Benedikt Schmidt Cas Cremers David Basin

Robert Kunneman Steve Kremer Ralf Sasse Jannik Dreier Cedric Staub

Sasa Radomirovic Lara Schmid Charles Dumenil Kevin Milner

and more soon!

Tamarin contributors

Tamarin prover: main ingredients

● More expressive input language
– Models with loops, branching
– Property specification in a fragment of first-order

logic with quantification over timepoints
● More powerful analysis techniques

– Constraint-solving backend
– User can inspect (partial) proofs
– User can provide invariants (“hints”) to the prover

Selected case studies

● Key exchange
– Naxos
– Signed DH
– KEA+
– UM
– Tsx

● Group protocols
– GDH
– TAK
– (Sig)Joux
– STR

● ID-based AKE
– RYY
– Scott
– Chen-Kudla

● Loops
– TESLA1 & 2

● Non-monotonic global state
– Keyserver
– Envelope
– Exclusive secrets
– Contract signing
– Security device/HSMs
– YubiKey
– YubiHSM
– Vehicle-to-vehicle/automotive

● PKI with strong guarantees
– ARPKI (also global state)

● Transparency
– DECIM (also global state)

● Etc etc.

Formal analysis possible?

● Modeled the TLS 1.3 specification under
development
– at this time: draft 10

● Goal: verify the core security properties of TLS
1.3

Thyla van der Merwe – Sam Scott – Marko Horvat – Jonathan Hoyland – Cas Cremers

Step 1: Building a model

Step 1: Building a model

Step 1: Building a model

Step 2: Encoding security properties

secret_session_keys:
(1) „All actor peer role k #i.
(2) SessionKey(actor, peer, role, <k, 'authenticated'>)@i
(3) & not ((Ex #r. RevLtk(peer)@r & #r < #i)
 | (Ex #r. RevLtk(actor)@r & #r < #i))
(4) ==> not Ex #j. K(k)@j“

● This says…
– For all possible values of variables on the first line (1)

– if key k is accepted at time point i (2), and

– the adversary has not revealed the long term keys of the actor or the peer
before the key is accepted (3)

– then the adversary cannot derive the key (4)

Want to show that this holds for all combinations of client, server, and
adversary behaviours – ALL traces!

The adversary’s view

Step 3: Proving security properties

SessionKey(...)

eventually will
boil down to
needing to
break DH

What can the
adversary do?

What can the
adversary do?and so on...

C2_No_Auth

C2_Auth

S2_Auth

S2

Revision 10 Initial results:
looks good!

Attacking client authentication (revision 10+)

Tamarin finds
an attack!

Problem 1

● Post-handshake client authentication looks
good… until composed with everything else

Cert_C
Client IAmGreat.com

ECDH
(auth IamGreat.com)

Client Twitter.com

ECDH
(auth Twitter)

Drop connections; psk1 ≠ psk1’

Both session hashes: h(nc,ns,…)

nc
nsk1

nc
ns k1’

nc
ns

k2 k2’{ session_hash,
Cert_C }sk(C)

Authenticate?

{ session_hash,
Cert_C }sk(C)

Authenticate?

signature

Act as C

Adversary

Observations

● Prime example of an attack that can arise
because of the interaction of modes

● Very complex attack
– requires 18 messages to set up

– involves 2 handshakes, 2 resumptions, 1 client
authentication…

● Found by Tamarin
– We didn’t see it coming at all

Problem 2

● Post-handshake client auth:

● While the server waits for a response,
data can still go back and forth...

What does the client know?
Post-handshake client auth

{ session_hash, Cert_C }sk(C)

Please authenticate

Issue: server and client can still exchange data while server waits for post-handshake
client authentication response.
At some point, server may receive the response and consider the connection to be
mutually authenticated. However, the client has no way of knowing when or even if this
happened.
(Needs to ask application layer!)

What does the client know?
Mutual authentication mode

Cert_C

Client

Cert_S

Server

nc, g^x
ns, g^y, Cert_S, please auth

Cert_C
Finished

Spec allows:
I don’t accept

that Cert but will
continue anyway

Client can’t tell difference
between “accept” and
“reject but continue”

Awkward handshake

● Even if
– The server asks for a certificate

– The client provides it

– The server sends/accepts subsequent traffic

● then the client can still not be sure that
the server thinks the client is authenticated

● TLS 1.3 and authentication
– Authentication is still complicated!

– We became more involved in the process
(we’re now official contributors to the TLS 1.3 RFC)

● The future
– Real-world complexity remains challenging

– Improving scope: scaling our algorithms

– Improving accuracy: integrate more crypto insights
cas.cremers@cs.ox.ac.uk

Conclusions

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	sam and whiteboard
	origin
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33

