Security Protocols
Foundations, Methods, and Tools

David Basin
Institute of Information Security, ETH Zurich

OAUTH Security Workshop
June 13th, 2017

ETH

Eidgenossische Technische Hochschule Ziirich
Swiss Federal Institute of Technology Zurich

Welcome to ETH Zurich

We look forward to learning about your work

We will highlight some of our work that may be relevant
- Verification tools
- [dentity management

Other things you can see while here

* Runtime monitoring (Dmitriy)

- Tamarin (Ralf, Cas, Lucca)

» Correct-by-construction development of protocols (Christoph))

- Verified Scion project, SD-WAN and more (Thilo, Christoph, Ralf)
- Particular protocols: voting, 5G (Ralf, Lucca)

 Access control, role & rule mining (Thilo)

A Typical Protocol

IKE, Phase 1, Main Mode, Digital Signatures, Simplified

I—-R: (i, ISA; PPN
{ —1: CI, CR, ISAR g‘i@
I—R: CI, CR, gX, NI

(1)
(2)
(3)
(4) R — 1 CI, CR, oY, Ngr
(5)
(6)

[-R: Cy, Cg, {IDy, SIG;}skevYID.
R —1: Ci, Cr, {IDg, SIGR}skeyID.

SKEYID = h({N;,Ng},g") Does arg“@
SKEYIDy = h(SKEYID, {g*, Cy, Cg,0}) order matter?
SKEYID, = h(SKEYID,{SKEYIDg,g,Ci € 1})
SKEYID, = h(SKEYID,{SKEYID,,g*,Cy, Cg,2})
HASH; = h(SKEYID, 1¢”, Cr, Cr,ISAy, ID;})
HASHr = h(SKEYID,, {g¥, o€x. C1, ISARg, IDR})
SIGr — {HASHI}K 1
SIGgr — {HASHR}K— Why all the nestedj
R keyed hashes?

Protocol Design as an Art

Best practices, design by committee, reuse of previous protocols, ...

Whenever | made a roast, | always started off by cutting off the ends, just like my
grandmother did. Someone once asked me why | did it, and | realized | had no idea. It
had never occurred to me to wonder. It was just the way it was done. Eventually | asked

my grandmother. “Why do you always cut off the ends of a roast?” She answered
“Because my pan is small and otherwise the roasts would not fit.”

— Anonymous

Protocol Design as a Science

Methodology ‘?
- Can we soundly codify standard intuitions and best practices? s S
- Can the development be made systematic, incremental and scaleable?

Complexity Abstraction examples
- What are the appropriate abstractions? secrecy encryption
- How should we use these in the development? authenticity | ~ signatures, MACs
recentness | timestamps, nonces

Correctness
- Can development be combined with verification (correctness by construction)?

- Alternatively: can we take existing protocol (standards) and formally verify them?

Machine support

- Verification tools: OFMC, Tamarin{ Scyther, Scyther Proof

» Testing tools: SecFuzz

Security Protocol Verification and Develoment

Security Protocol Models

- Security protocols use cryptography to achieve their security goals

(e.g., establish a secure channel, authentication, ...)
- Symbolic and computational models

Protocol Verification
« Secrecy problem is undecidable

* Problem caused by unboundedness of
message size, # of sessions, # of nonces

- Decision procedures for restricted cases
- Unbounded verification (ProVerif, Scyther, Tamarin)

Protocol Development

Messages Unbounded
Sessions Unbounded
Nonces Unbounded

Messages
Sessions
Nonces

Bounded
Unbounded
Unbounded

Messages
Sessions
Nonces

Bounded
Unbounded
Bounded

Messages
Sessions
Nonces

Unbounded
Unbounded
Bounded

Messages
Sessions
Nonces

Unbounded
Bounded
Bounded

Messages Bounded
Sessions Bounded
Nonces Bounded

- How to systematically develop protocols that are secure by construction?

- Has received less attention than post-hoc verification

ETH Tools for Unbounded Protocol Analysis

scyther-

Scyther. Tamarin
proof
Main reference CCS'08, CAV'08 CSF 2010 CSF 2012 (extended version)
Example applications S:C'Egsmi:irgfcﬁi‘gf’sa“es' IKE, protocol ISO/IEC 9798 Naxos. UM, Signed Diffie-Hellman
(Unbounded verification Yes Yes Yes)
Attack finding and visualisation Yes Yes

Classical properties
(secrecy, agreement, aliveness, Yes Yes Yes
synchronisation)

Complete characterization Yes Yes
Property specification using a Yes
guarded fragment of first-order logic
: N
Protocol specification Linear role scripts :::1%?; role Multiset Rewriting (branching, loops)
. Free term Diffie-Hellman & user-defined subterm-
Cryptographic message model Free term algebra algebra convergent rewrite theory
Dynamic corruption Yes Yes Yes
Compromising adversaries Yes Yes
\ User-specified adversaries Yes (e.g., eCK, eCK-PFS) Yy,
Generating machine-checked Yes (via
proofs Isabelle/HOL)
Generating protocol security
hierarchies L
Has been used in teaching Yes (exercises available) Yes
Proof visualisation Yes Yes

Interactive proof construction and

exploration Yes

A Demo with Scyther

1. A— B: {;/1,JDJ)4}jp(E3
2. B— A: {;pV;4J]\[53}>}(?4
3. A— B: -{lN]23}gp(E3

Here is an instance (a protocol run):

| {Alice,17}K
S @ Bob >
~ »
A —4

{1741}
K Alice

{41}

B @ KBob

Even Trump can defeat Grandmasters

Kasparov
e2-e4
>
e2-e4
>
d7-d5
€
d7-d5
<
edxd5
>
......................)
(......................

1. A — B: {A,NA}KB

Attack on NSPK 2. B—A: {Na, Np}lg,
3. A— B: {NB}KB

ﬂ NSPK #1 NSPK #2
cJo! H H

{Cl, M }KC {d,]\él }Kb
—
WNa, Ny ik, NG N i,
R

Wik, Woik,
—r

b(ob) believes he is speaking with a(lice)!

Focus: Provably Repairing the ISO/IEC 9798
Standard for Entity Authentication

Joint work with

Simon Meier Cas Cremers

See: “Provably Repairing the ISO/IEC 9798 Standard for Entity
Authentication”, Journal of Computer Security, 2013

11

Outline

ISO/IEC 9898: Purpose and Content
Automatic analysis

Fixes and machine-checked correctness proof
Engineering principles

New version of standard & conclusions

12

The ISO/IEC Standard

Entity Authentication Mechanism

17 base protocols

- Symmetric-key encryption, digital signatures,
cryptographic check function

- Unilateral or mutual authentication

- Additional protocols with TTP

Further variants from optional fields

Intemational
Crganization for
Standardization

The ISO/IEC 9798 Standard

History V25 | Infemational
- Active development and updates since 1991 @ mz.:hm

* Blueprints for protocol design
- Basis for ISO 11770 (Key Exchange) and NIST FIPS 196
- Mandated by other standards
* e.g9. European Banking Commission's smart card standards

Intended properties

- Entity authentication?

* E.g. resistant to reflection attacks
 Encrypted/signed payloads?

14

Standard issues: protocols and properties

Protocols
* 17 base protocols
- Optional text fields with

Protocol Description

Part 2: Symmetric-key Cryptography
9798-2-1 One-pass unilateral authentication
9798-2-2 Two-pass unilateral authentication
9798-2-3 Two-pass mutual authentication
9798-2-4 Three-pass mutual authentication
9798-2-5 Four-pass with TTP

9798-2-6 Five-pass with TTP

Part 3: Digital Signatures

ap pl icat i O n S peCifi C m ean i n g 9798-3-1 One-pass unilateral authentication

« Optional identifiers
(can drop for efficiency?)

Properties

9798-3-2 Two-pass unilateral authentication

9798-3-3 Two-pass mutual authentication

9798-3-4 Three-pass mutual authentication

9798-3-5 Two-pass parallel mutual authentication

9798-3-6 Five-pass mutual authentication with T'TP, initiated by A
9798-3-7 Five-pass mutual authentication with TTP, initiated by B

Part 4: Cryptographic Check Functions
9798-4-1 One-pass unilateral authentication
9798-4-2 Two-pass unilateral authentication
9798-4-3 Two-pass mutual authentication
9798-4-4 Three-pass mutual authentication

Table A. Typical interpretations of “a client C authenticated by a server S.”

Variant Entity authentication

Weaker Aliveness of C: C has
performed an action.

Stronger Recent aliveness of C: C has
performed an action (causally)
after a specific action of S.

Data agreement Authenticated session key

Noninjective agreement on message m: S Authenticated session key k: session

has received the message m from C. Chas key k is a fresh session key, known

sent m to S. only to Cand S and possibly a trusted
third party.

Agreement on message m: noninjective Authenticated session key k with

agreement on m, and S will not accept m if ~ compromise resilience: k is an

it is replayed by the adversary. authenticated session key, and

compromise of an old session key
does not lead to compromise of k.

15

ISO 9798-2-5

Symmetric key encryption with TTP

Trusted Third Party

P

€

TVP,, Ig, Texty

Tokenpa = Texta,

{ TVPa, kab, Ig, Texts [},
ﬂ TNp, kab, 14, Text> I}i’fsp

TD}‘{E'HP,Q

Tokenag = Textg,
{I TNp, kab, |4, Text» &?{HP,
{l TNA, fg, TE'Xf5 l}iab

Tokenag

3|

EXPLANATION

TVP: “Time Value Parameter” =
sequence number, nonce, or timestamp
(non-repeating)

TN: Timestamp or sequence number

I: Identity

Text: Optional text field

k: Key

{| TNg, Ia,

Tokenga = Textg,

Tokenga
-

I | R 1

Analysis

Request by CryptRec to evaluate standard

C->CRYPTREC

Cryptography Research and Evauation Committees

 Cryptography Research and Evaluation committees
* Funded by the Japanese government
- Part of long-running program to evaluate cryptographic mechanisms

Confirmation expected
« Standard has been improved since 1994
« Substantial previous analysis (multiple rounds)

17

Tools used

Scyther Scyther-proof

Symbolic analysis of security protocols - Embedding of protocol semantics

- Falsification (attack finding) and protocol-independent invariant in
« Unbounded verification the ISABELLE/HOL theorem prover

« Algorithm similar to Scyther that
T SomerbRStand outputs proof script for Isabelle/HOL

erify Help

Protocol description | Settings

£ ymmetcole proc ST : - Independent verifiability

47 role | Run :#1
48 (Bob in role |
49 const x: Nonce; Protocol DH-NIST
50 var beta: Ticket; (claim)
51 [}
52 send_1(I,R, g1(x)); | -> Bob
53 recv_2(R/l, beta); R -> Alice
54
55 claim(l,SKR, KDF(g2(beta,x),g2(g1(sk(R)),sk(l),1F Const x#1
gg } Var beta -> gl(Ticketintruder3)
58 role R Initiator
59 {
60 const y: Nonce;
61 var alpha: Ticket;
62 Y
63 recv_1(L,R, alpha); send_1 to Alice Initial intruder knowledge
64 send_2(R,, gl(y)); gl(x#1) The intruder generates: TicketIntruder3
65
66 claim(R,SKR, KDF(g2(alpha,y),g2(g1(sk(l)),sk(R)), |r
g;} } |[sk(Alice)] /gl
— 5 /,/ ' \ \
recv_2 from Alice
P @ gl(Ticketlntruder3) [sk(Bob)] }92 \
s |
= \ I|

claim_|1
SKR : KDF(g2(gl(Ticketintruder3),x#1),92(gl(sk(Alice)),sk(Bob)),Bob,Alice)

18

Results

No strong authentication properties

Aliveness < Agreement < Synchronisation

Under some conditions no authentication (weakest violated property listed)

Protocol Violated property Assumptions
9798-2-3 A Agreement(B, TNB, Text3)

9798-2-3 B Agreement(A, TNA, Textl)
0798-2-3-udkey A Agreement(B, TNB, Text3)
0798-2-3-udkey B Agreement(A, TNA Textl)

9798-2-5 A Alive Alice-talks-to-Alice
9798-2-5 B Alive

9798-2-6 A Alive

9798-2-6 B Alive

0798-3-3 A Agreement(B, TNB, Text3)

9798-3-3 B Agreement(A TNA Textl)

9798-3-7-1 A Agreement(B,Ra,Rb, Text8) Type-flaw
9798-4-3 A Agreement(B, TNb, Text3)

9798-4-3 B Agreement(A, TNa, Text1)

0798-4-3-udkey A Agreement(B, TNb, Text3)
9798-4-3-udkey B Agreement(A, TNa, Textl)

19

Trusted Third Party

L P |

I

TVPy, Ig, Texty

Tokenpy = Texts,

{l TNP, kab, /A, Teth [}f(BP

{] TVPy, kab, Ig, Texts ﬂf(AP,

Tokenpa

Tokenag

= Texts,

{] TNp, kab, I, Text, Bf(w,
{ TNa, Ig, Texts |5,

assumes Alice in role Al |assum
assumes Bob in role B | | assumes Bo

Alice in role B

)

thread 1 thread 2 thread 3
role P ole A N role B
executed by Pete exdcuted by Pete executed by Bob F—

assumes Alice in role A
assumes Pete in role P

TVPx4, Il%ob . Text,

Tokenpa = Texty,

| TVPa, k, lBob, Text @

Mirrored assumptions on A and P players

K_AP == K_PA — mismatch not detected!

Thread 2 does not decrypt this and

therefore does not detect that it is not
K BA and | Pete

{l TNP, , IAI ice Text: 2 I
Tokenpa
, Tokenag — Textg,
Alice » {‘ TNp, k, I

-~

 Texts |}f<

BL

_- Message does not

contain anything
of A/P assumptions

Tokenag

> Token BA

Tokenag

Tokenga = Textg,

ﬂ TNg, I, Texty Diab

Tokenga

£ E Alice Lives!i >

__*

Root causes of the problems

Message format is consistent and minimal
- Good design individually, but leads to possible confusion between different
messages

No type information for fields
- Combined with above, can lead to type flaw attacks

Identity of one agent always included to break symmetry of shared keys
- Great, but doesn’t work for three parties

21

Prudent engineering

Original rules [Abadi and Needham, 1995] insufficient
* Principle 1
- Every message should say what it means: the interpretation of the
message should depend only on its content. it should be possible to
write down a straightforward English sentence describing the content
— though if there is a suitable formalism available that is good too.”

* Principle 3

- “If the identity of a principal is essential to the meaning of a message,
it is prudent to mention the principal’s name explicitly in the message.”

22

New principles

Positional tagging

“Cryptographic message components should contain information that uniquely
identifies their origin. In particular, the information should identify the protocol,
the protocol variant, the message number, and the particular position within the
message, from which the component was sent.”

Example: message with fields omitted should contain information to determine this.

Inclusion of identities and their roles
“Each cryptographic message component should include information about the
identities of all the agents involved in the protocol run and their roles unless

there is a compelling reason to do otherwise.” (Possible compelling reason:
identity protection)

Example: include ordered sequence of identities involved for each role. ”

Repairing ISO/IEC 9798

We proposed fixes and machine-checked correctness proofs

* Fixes do not require additional cryptography
* Fixes follow new principles

Scyther-proof generates proof scripts for Isabelle-HOL

Proofs even guarantee correctness when executing all the protocols in
parallel

« Excludes multi-protocol attacks

24

Effort

Modeling effort: a couple of weeks
- Abstraction level of standard close to formal models
- Some iteration inevitable after initial analysis with Scyther

Generating proof scripts using Scyther-proof
« 20 seconds

Checking correctness of scripts in Isabelle/HOL
* 3 hours (correctness for all protocols in parallel)

Experience similar on other projects
» and also with proprietary designs

25

Conclusion

Improving the ISO/IEC 9798 standard el | niomciional
- Old version: only weak authentication, sometimes none @ mh'g“m'“

- Successful interaction between researchers and
standardization committee

* New version of the standard has been released which
guarantees strong authentication (synchronization)

- Machine-checked symbolic proofs of standard

Future standardization efforts should take note
- Automated formal analysis is feasible and useful
 Current work: more complex protocols

- Rekeying, databases, complex control flow

- 5G protocols

* Also identity management

